

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS
REED-MULLER CODES IN ERROR CORRECTION IN

WIRELESS ADHOC NETWORKS

by

Serdar U. Tezeren

March 2004

 Thesis Advisor: Murali Tummala
 Co-Advisor: Roberto Cristi

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Reed-Muller Codes in Error Correction in Wireless
Adhoc Networks
6. AUTHOR(S) Tezeren, Serdar Umit

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The IEEE 802.11a standard uses a coded orthogonal frequency division multiplexing (COFDM) scheme in the 5-

GHz band to support data rates up to 54 Mbps. The COFDM was chosen because of its robustness to multipath fading affects.
In the standard, convolutional codes are used for error correction. This thesis examines the performance of the COFDM system
with variable rate Reed-Muller (RM) error correction codes with a goal to reduce the peak-to-average power ratio (PAPR).
Contrary to the expectations, RM codes did not provide expected improvement in PAPR reduction. Peak clipping and Hanning
windowing techniques were investigated in order to reduce the PAPR. The results indicate that a tradeoff exists between the
PAPR and the bit-error rate (BER) performance. Although peak clipping yielded considerable reduction in PAPR, it required
high signal-to-noise ratios. On the other hand, Hanning windowing provided only a small reduction in PAPR with reasonable
BER performance.

15. NUMBER OF
PAGES

153

14. SUBJECT TERMS
COFDM, Reed-Muller Error Correction Codes, Convolutional Codes, PAPR, QPSK, Multipath
Fading, Peak Clipping, Hanning Windowing, IEEE 802.11a Standard, Outdoor Wireless Digital
Communication Channel, Indoor Channel Characteristics, Delay, Doppler Effect. 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

REED-MULLER CODES IN ERROR CORRECTION IN WIRELESS ADHOC
NETWORKS

Serdar U. Tezeren
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Serdar U. Tezeren

Approved by: Murali Tummala

Thesis Advisor

Roberto Cristi
Co-Advisor

John Powers
Chairman, Department of Electrical and Computer Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The IEEE 802.11a standard uses a coded orthogonal frequency division multi-

plexing (COFDM) scheme in the 5-GHz band to support data rates up to 54 Mbps. The

COFDM was chosen because of its robustness to multipath fading affects. In the stan-

dard, convolutional codes are used for error correction. This thesis examines the perform-

ance of the COFDM system with variable rate Reed-Muller (RM) error correction codes

with a goal to reduce the peak-to-average power ratio (PAPR). Contrary to the expecta-

tions, RM codes did not provide expected improvement in PAPR reduction. Peak clip-

ping and Hanning windowing techniques were investigated in order to reduce the PAPR.

The results indicate that a tradeoff exists between the PAPR and the bit-error rate (BER)

performance. Although peak clipping yielded considerable reduction in PAPR, it required

high signal-to-noise ratios. On the other hand, Hanning windowing provided only a small

reduction in PAPR with reasonable BER performance.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVE ..1
B. RELATED WORK ..2
C. THESIS ORGANIZATION..2

II. CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
(COFDM) AND PEAK-TO-AVERAGE POWER RATIO (PAPR).......................3
A. CODED ORTHOGONAL FREQUENCY DIVISION

MULTIPLEXING (COFDM)...3
B. COFDM SCHEMATIC DIAGRAM..6

1. Channel Coding..7
2. Block Interleaver..7
3. Symbol Mapping ..8
4. Discrete Fourier Transform (DFT) ..8
5. Guard Interval and Cyclic Extension ..8
6. Modulator ...9
7. Channel ...9
8. Receiver...11

C. PEAK TO AVERAGE POWER RATIO (PAPR)11

III. CODING SCHEME...13
A. ERROR CORRECTION SYSTEMS...13
B. REED-MULLER CODES...15

1. Definitions of Operations ..16
2. Encoding Algorithm...16
3. Decoding Algorithm...19
4. Reduction of PAPR of COFDM Using RM Coding........................19

C. PEAK CLIPPING..20
D. HANNING WINDOWING ...21

IV. SIMULATION RESULTS ..23
A. SIMULATION MODEL ...23
B. SIMULATION PARAMETERS ..23
C. SIMULATION RESULTS ..25

1. Multipath Effects ...28
2. Outdoor Environment ...32
3. PAPR Reduction ..36

V. CONCLUSION ..41
A. CONCLUSIONS ..41
B. FUTURE WORK...42

APPENDIX A. SIMULATION-ARCHITECTURE ...43
A. GENERAL STRUCTURE OF MATLAB PROGRAMMING43

 vii

1. COFDM Transmitter...43
a. Message Generator ...43
b. FEC Coding...44
c. Interleaver ...44
d. Symbol Reformatter ..44
e. Differential Encoder ...44
f. IFFT Processing ...45
g. Guard Interval Insertion...45

2. COFDM Receiver...45
a. Guard Interval Removal ...45
b. FFT Processing...46
c. Differential Decoding and Symbol Reformatting46
d. Deinterleaver ...46
e. FEC Decoder...46
f. Decoded Message ..46

3. Channel Models..47
B. MATLAB PROGRAMMING DETAILS..47

1. COFDM Transmitter...48
2. COFDM Receiver...52
3. COFDM Channel ...53

APPENDIX B. COFDM MATLAB CODE..57

INITIAL DISTRIBUTION LIST ...135

 viii

LIST OF FIGURES

Figure 1. Frequency Efficiency of OFDM over FDM Illustrated for Two and Three
Subchannels (After Ref. 5.) ...4

Figure 2. Spectra of an OFDM Subchannel and OFDM Signal (From Ref. 5.)................5
Figure 3. Block Diagram of COFDM Transmitter and Receiver (From Ref. 7.)..............7
Figure 4. QPSK Constellation points (From Ref. 7.) ..8
Figure 5. 9-Point Hanning Windows...21
Figure 6. COFDM System Block Diagram. ..23
Figure 7. Transmitted and Received QPSK Signal Constellations for Channel 0.25
Figure 8. The Effects of AWGN over QPSK Signal Constellation.26
Figure 9. BER Performance of the COFDM system under Channel 1 (AWGN only)

Conditions. ...27
Figure 10. The Effects of Multipath on QPSK Signal Constellation28
Figure 11. The Representation of COFDM Signal Under Multipath and AWGN

Effects. ...29
Figure 12. The Effects of AWGN and Multipath on QPSK Signal Constellation

Before Differential Decoding ..29
Figure 13. The Effects of AWGN and Multipath on QPSK Signal Constellation After

Differential Decoding ..30
Figure 14. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 5-Hz Doppler Conditions..31
Figure 15. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 10-Hz Doppler Conditions..31
Figure 16. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 15-Hz Doppler Conditions..32
Figure 17. The Effects of Channel 4 on Signal Magnitude...33
Figure 18. The Effects of Channel 4 on Signal Constellation (Before Differential

Decoding)...33
Figure 19. The Effects of Channel 4 over Signal Constellation (After Differential

Decoding)...34
Figure 20. BER Performance Curves for Channel 4A Simulation....................................35
Figure 21. BER Performance Curves for Channel 4B Simulation....................................35
Figure 22. BER Performance of the System with Peak Clipping.37
Figure 23. BER Performance of the System with 3-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom Level)..38
Figure 24. BER Performance of the System with 5-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom Level)..39
Figure 25. BER Performance of the System with 9-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom level) ...39
Figure 26. COFDM Transmitter Block Diagram. ...43
Figure 27. COFDM Receiver Block Diagram...45
Figure 28. General Arrangement of the COFDM System...48

 ix

Figure 29. The Arrangement of the Macro Files within the cdrcdlft.m.49
Figure 30. The Arrangement of the Macro Files within the decdrcl.m.............................52
Figure 31. The Arrangement of the Macro Files within the chancdl.m.54

 x

LIST OF TABLES

Table 1. Multipath Fading Parameters for Channels 2 and 3...24
Table 2. Outdoor Channel Parameters of Channel 4 ...24
Table 3. General Test Plan...25
Table 4. The Number of the Error(s) that Different Types of RM Codes Can

Correct..27
Table 5. PAPR Values without Windowing and Peak Clipping....................................36
Table 6. Peak Clipping Results. ...36
Table 7. The Results of 3, 5, 9-Point Hanning Windowing...38
Table 8. Channel Characteristics. ..47
Table 9. The Input and Output Parameters of the Subroutines Run within the

Transmitter Part of the COFDM Simulation. ..51
Table 10. The Input and Output Parameters of the Subroutines Run within the

Receiver Part of the COFDM Simulation..53
Table 11. The Input and Output Parameters of the Subroutines Run within the

Channel Part of the COFDM Simulation...55

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

First, I would like to thank my long-time friend, A. Yasin Erdogan for his friend-

ship and cooperation during my education at the Naval Postgraduate School and the de-

velopment of our theses.

Secondly, I thank my thesis advisors, Dr. Murali Tummala and Dr. Roberto Cristi

for their suggestions and advise during the development of this thesis.

Special thanks to Mr. Benjamin Cooke from the University of Duke for his sup-

port of and patience with my never-ending questions, and also to my mother, Seval Tez-

eren, for the sacrifices she made in support of the completion of this thesis in her two-

month vacation.

This thesis is dedicated to my father, Cetin Tezeren.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

EXECUTIVE SUMMARY

Since, wireless local area networks (WLAN) were increasingly becoming more

and more important for broadband wireless communications in both military and com-

mercial application, the main goal of this thesis was to investigate the performance of a

coded orthogonal frequency multiplexing (COFDM) system utilizing Reed-Muller (RM)

codes. In order to achieve this goal, three different types of RM codes and for comparison

a rate one-half convolutional code are investigated through simulations. Also Hanning

windowing and peak clipping techniques were investigated for reducing the peak-to-

average ratio (PAPR) in COFDM systems.

The performance of the COFDM system was studied under indoor and oudoor

channel environments using five different channels. The bit-error performance curves for

each of the RM codes and convolutional code were obtained.

The results showed that the COFDM system is robust in indoor channel environ-

ments. However, for the outdoor channel environments, the system requires higher sig-

nal-to-noise ratios (SNR) to achieve the same bit-error rate (BER) performance as in the

indoor case. Also, BER performance curves showed that the RM codes provide better

performance in indoor channel environment at low SNR. However, convolutional codes

provide better performance in outdoor channel environments.

Reed-Muller codes are straightforward to implement, and they provide a wide

range of coding options. However, RM codes did not provide the expected improvement

in PAPR.

The addition of Hanning windowing and peak clipping improve PAPR reduction.

While improvement with Hanning windowing is limited, peak clipping provides remark-

able reduction in PAPR but at the cost of increased bit error.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

Wireless local area networks (WLAN) are increasingly becoming more and more

important for broadband wireless communications in both military and commercial appli-

cations. The IEEE 802.11a WLAN standard uses the orthogonal frequency division mul-

tiplexing (OFDM) to support data rates from 6 to 54 Mbps and operates in the 5-GHz

band. OFDM is a multicarrier transmission method in which a high-rate data sequence is

split into multiple low rate subblocks, and each subblock of data is modulated onto sepa-

rate subcarriers. Specifically, IEEE 802.11a uses coded OFDM (COFDM) because of its

robustness under multipath fading conditions.

A. OBJECTIVE

It is well known that multicarrier communication systems suffer from high peak-

to-average power ratio (PAPR) because of the constructive interference of the signals.

There are numerous methods to reduce the PAPR of the COFDM signal. One of the miti-

gation techniques is to use Reed-Muller (RM) codes.

The main goal of this thesis was to analyze the COFDM system utilizing RM

codes. In order to achieve this goal, three different types of RM codes and for comparison

a rate one-half convolutional code were investigated through simulation studies. Also,

Hanning windowing and peak clipping techniques were investigated for reducing the

PAPR in OFDM systems.

Although binary pulse shift keying (BPSK), quadrature pulse shift keying

(QPSK), 16 quadrature amplitude modulation (16-QAM), and 64-QAM techniques are

used in IEEE 802.11a WLAN systems, only the QPSK modulation technique was imple-

mented in the simulations here. Using four different simulation steps, the performance of

the COFDM system was studied under both indoor and outdoor channel environments.

The bit-error rate (BER) performance curves for each of the RM codes and the convolu-

tional code were obtained.

1

B. RELATED WORK

The RM coding algorithms in [1] provided a starting point for the implementation

of encoding and decoding algorithms of RM codes in the simulations here. The Hanning

windowing and the peak clipping algoritms used in this work were first introduced in [2].

The MATLAB simulation code used in this thesis was first developed by

Roderick [3] for line-of-sight ship-to-ship, ship-to-shore and ship-to-relay type of con-

nectivity. Tan [4] modified the MATLAB code in [3] to develop a simulation of the IEEE

802.11a standard’s physical layer for indoor channel environments. Convolutional codes

with hard decision decoding technique were used. The author used the MATLAB code in

[4] as a starting point for developing the simulations in this thesis.

C. THESIS ORGANIZATION
Chapter II presents the basics of COFDM and its schematic structure, the defini-

tion of PAPR, and a general overview of the various functional blocks in an OFDM sys-

tem. Interleaving and guard interval are explained as part of the COFDM system. Chapter

III focuses on the coding scheme. The Hanning windowing and peak clipping techniques

are described. The simulation methodology and test results are presented in Chapter IV.

Finally, the thesis concludes with Chapter V.

Appendix A describes the MATLAB architecture. The transmitter, receiver and

channel parts of the simulation model are explained, and MATLAB functions are de-

scribed. Appendix B includes the MATLAB code.

2

II. CODED ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING (COFDM) AND PEAK-TO-AVERAGE POWER

RATIO (PAPR)

This chapter presents the basics of the coded orthogonal frequency division mul-

tiplexing (COFDM) technique and the advantages and disadvantages of COFDM com-

munication systems. As it is one of the main disadvantages of the multicarrier communi-

cation systems, the peak-to-average power ratio (PAPR) in OFDM systems is also dis-

cussed.

A. CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
(COFDM)
In COFDM, the total bandwidth is divided into N nonoverlapping frequency sub-

channels. Each subchannel is modulated with a different symbol and then the N subchan-

nels are frequency-multiplexed. While conventional frequency division multiplexing

(FDM) successfully avoids spectral overlap of channels and eliminates interchannel inter-

ference (ICI), it makes the frequency spectrum usage inefficient. OFDM uses the spec-

trum more efficiently than the conventional frequency division multiplexing (FDM) by

allowing frequency overlapping.

Figure 1 illustrates the difference between the nonoverlapping and overlapping

multicarrier modulation techniques. It can be seen that almost half of the bandwidth is

saved by overlapping the spectra.

3

OFDM FDM

3R/4R/4-R/4-3R/4 RR/2-R/2-R

RR/3-R/3-R2R/3R/3-R/3-2R/3

W = 3R/2 W = 2R

W = 4R/3 W = 2R

N = 2

N = 3

ff

ff

OFDM FDM

3R/4R/4-R/4-3R/4 RR/2-R/2-R

RR/3-R/3-R2R/3R/3-R/3-2R/3

W = 3R/2 W = 2R

W = 4R/3 W = 2R

N = 2

N = 3

ff

ff

Figure 1. Frequency Efficiency of OFDM over FDM Illustrated for Two and Three
Subchannels (After Ref. 5.)

OFDM also requires that the subchannel carrier frequencies are orthogonal. Two

subcarriers are orthogonal if their inner product is zero. The COFDM subcarrier signals

can be arranged such that the sidebands of the carriers overlap but the signals can still be

received without ICI. In COFDM, cross talk among the subcarriers is prevented by mak-

ing the subcarriers orthogonal. In other words, each subcarrier must be spaced at intervals

of 1/ sT where sT is the symbol duration for each subcarrier. A representative COFDM

signal is shown in Figure 2. Individual COFDM subchannel response is shown in Figure

2(a) and the COFDM signal spectrum for 4N = is shown in Figure 2(b). It can be seen

that the spectra of the subcarriers are not separated but overlapped in frequency.

The discrete Fourier transform (DFT) is used to accomplish frequency multiplex-

ing and subcarrier orthogonality. The transmitter uses an IDFT operation to modulate

subblocks of data symbols. A DFT is used at the receiver where the signal is sampled at

the center frequency of each subchannel, and the transmitted data are recovered without

ICI. From Figure 2, it can be seen that, at the center frequency of a subchannel, the

sidelobes due to all the other channels produce a null.

4

(a) Individual COFDM subchannel response (b) COFDM subchannel response for N = 4(a) Individual COFDM subchannel response (b) COFDM subchannel response for N = 4
Figure 2. Spectra of an OFDM Subchannel and OFDM Signal (From Ref. 5.)

The fast Fourier transform (FFT) algorithm is used to implement both the IDFT at

the transmitter and the DFT in the receiver, thus making it computationally efficient.

The COFDM divides a symbol sequence into N symbol groups so that each group

contains a symbol sequence of rate 1/N of the original sequence. The COFDM signal

consists of N orthogonal subcarrier signals, where each of subcarrier is modulated by a

different symbol sequence. Lengthening the symbol duration helps eliminate the use of

an equalizer in the receiver.

COFDM reduces the effects of frequency selective fading or narrowband interfer-

ence. If fading or interference takes place in a single carrier system, it can fail the whole

system while only some of the subcarriers will be affected in a multicarrier system. Addi-

tionally, by using error correction coding, the COFDM system performance can be fur-

ther improved.

A COFDM system uses the frequency spectrum very efficiently since it allows

overlapping. In COFDM, the use of cyclic extension prevents intersymbol interference

(ISI) and ICI problems. Dividing the channel into subchannels makes the COFDM sys-

tem more robust to frequency selective fading effects while channel coding and interleav-

ing make it more robust to errors due to the channel noise. These features of the COFDM

5

are considered the key advantages. However, besides these advantages, the system has

also drawbacks as it requires power amplifiers with a high PAPR in order to provide a

large effective range and is prone to frequency offset relative to single carrier systems.

The efficiency in frequency spectrum usage and the robustness to multipath fad-

ing make COFDM desirable in a number of applications, such as digital audio broadcast-

ing (DAB), high rate digital subscriber line (HDSL), very high rate digital subscriber line

(VHDSL), asymmetric DSL (ADSL), HDTV terrestrial, IEEE 802.11 and HiperLAN/2,

general switched telephone network (GSTN), cellular radio, and digital video broadcast-

ing (DVB-T). [6]

B. COFDM SCHEMATIC DIAGRAM

The basic principle of COFDM, as mentioned in the previous section, is to divide

a high-rate data stream into N lower rate streams and to transmit them at the same time

over a number of subcarriers. Since the symbol duration is increased, the relative amount

of dispersion in time caused by multipath delay spread is decreased. Intersymbol interfer-

ence (ISI) is another problem, which can almost be eliminated by introducing a guard

time in every COFDM symbol. In order to avoid the ICI, a COFDM symbol is cyclically

extended by adding a guard time. A general block diagram of the transmitter and the re-

ceiver for the COFDM scheme is shown in Figure 3. The COFDM is used in 802.11a

standard. In the following discussion as we describe the COFDM system, frequent refer-

ences will be made to this standard.

6

FEC
ENCODER

MAPPING /
INTERLEAVING IFFT

GUARD
INTERVAL
ADDITION

SYMBOL
WAVE

SHAPING

IQ
MODULATOR HPA

LNAAGCIQ DET.

RX LEV.DET.AFC
CLOCK

RECOVERY

REMOVE
GUARD

INTERVAL
FFTDEMAPPING /

DEINTERLEAVING
FEC

DECODER

FEC
ENCODER

MAPPING /
INTERLEAVING IFFT

GUARD
INTERVAL
ADDITION

SYMBOL
WAVE

SHAPING

IQ
MODULATOR HPA

LNAAGCIQ DET.

RX LEV.DET.AFC
CLOCK

RECOVERY

REMOVE
GUARD

INTERVAL
FFTDEMAPPING /

DEINTERLEAVING
FEC

DECODER

Figure 3. Block Diagram of COFDM Transmitter and Receiver (From Ref. 7.)

1. Channel Coding

In the IEEE 802.11a standard, data is encoded with a convolutional encoder with

a coding rate 1 2, 2 3R = or 3 4

0 8133

. The convolutional encoder uses the industry-standard

generator polynomials, and g = 1 171g 8= of rate 1 2R = [6]. The code rate for the

convolutional code can be changed by using a puncturing process. In this thesis, the data

are also encoded with RM codes. The details of RM codes are explained in Chapter III.

2. Block Interleaver
If decoding errors occur in a codeword and these are passed to the next block,

they may affect the performance of the entire system. The performance of the system can

be improved if these errors are distributed over the other code words. This can be

achieved by interleaver/deinterleaver.

A block interleaver consists of a two-dimensional array, into which the data are

read along its rows. When the array is full, the data are read out by the columns, thus the

order of the data is permuted. The original order can be received by the corresponding

deinterleaver in which the data are read in by columns and read out by rows.

7

3. Symbol Mapping

The interleaved and rearranged data are mapped onto constellation points in ac-

cordance with the modulation type. Figure 4 shows QPSK constellation points.

Figure 4. QPSK Constellation points (From Ref. 7.)

4. Discrete Fourier Transform (DFT)
There are 52 subcarriers per channel in a IEEE 802.11a standard WLAN system,

where 48 of these subcarriers carry data and the remaining four subcarriers are used as

pilot tones. After serial-to-parallel conversion, each COFDM symbol is modulated over

52 subcarriers by applying an inverse fast Fourier transform (IFFT).

5. Guard Interval and Cyclic Extension
A guard time is added to each COFDM symbol to eliminate the ISI and ICI, and it

is removed before the FFT operation at the receiver. Since the other parameters are cho-

sen according to the guard interval time, it is an important parameter for the COFDM sys-

tem. As long as the guard time is larger than the expected delay spread, multipath com-

ponents from one symbol do not cause interference with the other symbol.

8

A zero-padding extension could be used as guard interval; however, this can not

eliminate ICI effects. Therefore, the COFDM symbol is cyclically extended into the

guard interval. The cyclic prefix for the transmission signal consists of a specific part of

last samples that are added to the beginning of the signal. Consequently, we have an ex-

tended signal. To ensure orthogonality between different subcarriers, it is required that all

subcarriers differ by an integer number of cycles within the FFT integration time. Al-

though the addition of guard interval eliminates the ICI and ISI effects, it causes ineffi-

cient use of the frequency spectrum

6. Modulator
The COFDM signal then is upconverted to the 5-GHz band and transmitted over

the channel.

7. Channel

The presence of noise in the channel affects the ability to make correct decisions

about the received symbols at the receiver part of the communication system, thereby

limiting the data transmission rate.

For additive white Gaussian noise (AWGN), a received signal is typically mod-

elled as an attenuated desired signal in AWGN with the noise having a power spectral

density (PSD) given by

0()
2n

NG f = W/Hz (2-1)

A free space propagation model may be adequate to analyze the satellite commu-

nication systems since there is always a line-of-sight (LOS) component and almost no

multipath fading effects. However, as a signal travels from the transmitter to the receiver

in the channels of interest, the path it takes can vary from a simple LOS to one that is se-

verely obstructed by buildings, hills, and trees, which lead to multipath propagation. The

free space propagation model may not be adequate to analyze and describe the character

9

istics of a channel. Because of the uneven terrain and other obstructions, a multipath

model is desired. Consequently, the received signal undergoes fading as it may consist of

multiple waves, which have randomly distributed amplitudes and phases.

The mean excess delay, rms delay spread, and excess delay spread are parameters

used to characterize multipath channels. The mean excess delay (τ) and rms delay

spread (τσ) of multipath channels are used to quantify the time dispersive properties of a

multipath channel. The mean excess delay is the first moment of the power delay profile

as given by

2

2

()

()

k k k k
k k

k k
k k

a P

a P

τ τ τ
τ

τ
= =
∑ ∑

∑ ∑
 (2-2)

and the rms delay spread is the square root of the second central moment of the power

delay profile defined as

2 ()τ
2σ τ τ= − (2-3)

where

2 2 2

2

2

()

()

k k k k
k k

k k
k k

a P

a P

τ τ τ
τ

τ
= =
∑ ∑

∑ ∑
, (2-4)

where is absolute power level. These parameters are measured relative to the first de-

tectable signal arriving at

ka

0 0τ = . Typical values of rms delay spread are on the order of

microseconds in outdoor channels and on the order of nanoseconds in indoor channels.

[8]

Due to the relative motion between the transmitter and the receiver, each multi-

path signal is subjected to Doppler shift. The Doppler shift is computed by

10

d
v

cf f
c

= (2-5)

where v is the velocity of the receiver, c is the speed of light (c m/s), and 83 10x= cf is

the carrier frequency. [8]

Different transmitted signals undergo different types of fading depending on sig-

nal and channel parameters. Four possible effects that the time dispersion and frequency

dispersion in a channel cause are frequency selective fading, flat fading, slow fading and

fast fading.

8. Receiver
On the receiver side of the COFDM system, the reverse operations are performed.

At the front end, a low-noise amplifier (LNA) that reduces the effective noise tempera-

ture of the receiver and an automatic gain control (AGC) that estimates the power of the

pilot tone and controls the power at the demodulator output are used. The guard interval

is removed once the symbols are detected. The symbol constellations are recovered by

passing the signal through FFT. The resulting data are deinterleaved and channel de-

coded.

C. PEAK TO AVERAGE POWER RATIO (PAPR)
COFDM signals are generated as the sums of a number of subchannel signals,

which are continuous-time sinusoidal signals. The summation may cause constructive

interference, thereby resulting in a high peak-to-average power ratio (PAPR).

The instantaneous power of the signal is

2() ()c cP t S t= (2-6)

where is the transmitted COFDM signal. ()cS t

The peak-to-average power ratio (PAPR) is given by

11

2

[0,]
2

max (())
PAPR

{(()) }

c
t T

c

S t

S tε
∈= (2-7)

where T is the symbol duration and {}ε denotes expectation.

If the peak transmission power is physically limited or limited by regulatory rules,

the system must be designed with reduced average transmitter power. This may reduce

the effective transmission range of the system. Additionally, costs may rise as more

equipment may be needed to cover the same transmission range. [9]

In brief, high PAPR is a disadvantage of COFDM communication systems. In this

thesis, we investigate ways to reduce PAPR.

In this chapter, the COFDM system architecture is presented and the advantages

and the drawbacks of the system discussed. The PAPR problem in COFDM systems is

examined. The next chapter presents the coding scheme and the Reed-Muller error cor-

rection codes as a mitigation technique to reduce the required PAPR.

12

III. CODING SCHEME

This chapter begins with an overview of error correction coding in digital com-

munication systems and the reason why channel coding is used. Also, we discuss how

error correction codes improve the performance of digital communication systems and

present a summary of commonly used error correction codes. The Reed-Muller error cor-

rection codes are discussed in detail. Also, peak clipping and Hanning windowing are

explained.

A. ERROR CORRECTION SYSTEMS
Due to the effects of noise and multipath fading in the channel, the transmitted

signal arrives at the receiver with some errors. The errors in the demodulated data are

characterized in terms of a BER, which is directly proportional to the symbol rate and

inversely proportional to transmitter power and bit-energy to noise power spectral density

ratio (0bE N). The bit error rate is an important performance parameter of digital com-

munication systems.

Error control strategies basically have two main categories, automatic repeat re-

quest (ARQ) and forward error correction (FEC). In this chapter, forward error correction

coding is discussed.

In forward error correction coding, a certain number of redundant bits are added

to data bits in a particular pattern according to the type of the code. In other words, for

every data bits, coded bits are transmitted, where > . In the receiver, the k data

bits can be recovered by performing a decoding operation on the n received coded bits.

k n n k

The transmission conditions in wireless communication channels are severe due

to multipath fading and the variation of the signal-to-noise power ratio. Therefore, in or-

der to design a communication system with an acceptable BER, error correction coding

must be used to protect the data from transmission errors.

13

As long as the signal-to-noise ratio (SNR) is high and the channel is relatively

flat, error correction coding may be unnecessary in OFDM systems. However, uncoded

OFDM systems do not perform well in fading channels. [10]

The code rate r k n= is a ratio of the number of data bits to the total number of

coded bits transmitted per code word.

As a result of redundancy, the number of bit errors can be expected to increase.

However, the reliability of demodulated data is increased because redundancy is used to

correct some of the errors. A better BER can be achieved at the output of the decoder by

using an appropriate coding scheme. The BER improvement provided by the channel

coding is generally expressed in terms of the required 0bE N to achieve the same per-

formance without coding. This difference in 0bE N is called coding gain as given by

dB dB

dB
0 0uncoded coded

b bE EG
N N

= −

 (3-1)

Using commercially available standard error correction systems, coding gains up

to 6 to 9 dB are achievable. [11, 12]

Linear block codes, convolutional codes and turbo codes are the most widely used

error correction codes. Although only convolutional codes and Reed-Muller codes are

used in the COFDM simulation undertaken in this thesis, linear block codes and turbo

codes are also mentioned.

Linear block codes generate n coded bits for k data bits where > . First, k data

bits are transmitted and then redundant bits which are generated according to the

generator matrices of the code are transmitted. The encoder consists of a k-stage shift reg-

ister and n modulo-2 adders. The shift register outputs are connected to modulo-2

adders according to the generator matrices of the code.

n k

n k−

k−

The main difference between block codes and convolutional codes is that a sys-

tem utilizing block codes transmits the data bits unaltered and then transmits the k n k−

redundant bits. A system utilizing convolutional codes produces coded bits from

data bits, and the code word does not contain unaltered data bits.

n k

k

14

As mentioned in Chapter II, in the IEEE 802.11a WLAN system, the data are

coded using a convolutional encoder with coding rate 1 2, 2 3r = , or 3 4 . The convolu-

tional encoder uses the half-rate industrial-standard generator polynomials, and

. Higher rates are obtained from the half-rate code by using a puncturing proc-

ess, which omits some of the encoded bits in the transmitter and inserts a dummy zero in

place of omitted bits in the convolutional decoder in the receiver. [7]

0 8133g =

1 171g = 8

A concatenated code consists of two separate codes in series in which the first

code, called outer code, directly takes the information bits and encodes them. The second

code, called inner code, takes the bits coded by the outer code and encodes them. In order

to prevent decoding errors from passing from one coder to the other, the errors are dis-

tributed by using the interleaving/deinterleaving operation. The interleaver is placed be-

tween the outer and inner encoders of a concatenated code in the transmitter and the dein-

terleaver is placed between the inner and outer decoders in the receiver. To make the cod-

ing system more efficient, the output of the outer decoder is reapplied to the inner de-

coder. This is the basis of the iterative decoding. It can be summarized as reapplying the

decoded word not just to the inner code, but also to the outer and repeating as many times

as necessary [13]. Turbo codes are based on parallel convolutional concatenated codes

(PCCC). Additionally, pseudorandom interleavers instead of rectangular interleavers are

used.

Since the goal of this thesis was to analyze the COFDM system with Reed-Muller

(RM) error correction codes, the focus was on the encoding and decoding algorithms of

RM codes.

B. REED-MULLER CODES
This section describes the encoding/decoding algorithm of the Reed-Muller (RM)

coding and how it is used for the reduction of PAPR in COFDM systems. Since the en-

coding and decoding algorithms are complicated and different from the other schemes,

some binary operations used with RM codes are first defined and then the encoding and

decoding algorithms are presented.

15

RM codes were described by Muller in 1954, and Reed provided a better alge-

braic representation with a decoding algorithm in the same year. RM codes were used in

space applications between 1969 and 1977. Although they seem to have lost their attrac-

tion in the space program because of the adoption of the newer codes, it does not neces-

sarily mean that BCH (Bose-Chaudhuri-Hocquenghem) and Reed-Solomon codes are a

better choice relative to RM codes for all applications. [11]

1. Definitions of Operations
Three possible operations performed in encoding and decoding are addition, mul-

tiplication and dot product. For the binary vectors 1 2(, ,.......,)nx x x x= and

, where each 1 2(, ,.......,)ny y y y= ix or is either 1 or 0, addition is defined as [1] iy

x+y = (1 1 2 2, ,.......,)n nx y x y x y+ + + (3-2)

and the complement x of vector x is the vector equal to 1 x+ . Multiplication is defined

as

x * y = 1 1 2 2(* , * ,......, *)n nx y x y x y . (3-3)

Finally, the dot product of x and y is defined as

x . y = 1 1 2 2(* * *)n nx y x y x y+ + + . (3-4)

2. Encoding Algorithm

The RM coding scheme is denoted in terms of (,)R r m . The parameters, r and m,

are defined by

2logm = n (3-5)

where n is the number of the columns of the encoding matrix and

2 minlogr m d= − (3-6)

where is the minimum Hamming distance. The number of the rows of the encoding

matrix is given by [11]

mind

16

1
1 2
m m m

k
r

= + + + +

. (3-7)

The encoding matrix of the (,)R r m code is defined as

0

1

2

1 2

1 3

1

1 2 3

1 2 4

2 1

1 2 3 4

1 1

:

:
(,)

:

:
...

m

m m

m m m

m r m m

x
x
x

x
x x
x x

G r m
x x
x x x
x x x

x x x
x x x x

x x x

−

− −

− + −

=

 (3-8)

where ix is the monomial vector and has a pattern of 2m i− ones followed by 2 zeros,

repeated until is completed. The first row of the encoding matrix

m i−

n 0x is all ones or all

zeros and the sequence of ones or zeros in the next rows are interchangeable. In this the-

sis, the first row is all ones and the sequence pattern is ones and zeros, respectively. For

example, if m = 3, then the encoding matrix for R(1,3) is given by

1

2

3

11 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0

(1,3)
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

x
G

x
x

=

 (3-9)

where the column on the right hand side is the corresponding monomial vector.

17

The R(2,3) code can be generated by adding the rows 1 2x x , 1 3x x and 1 3x x to the

generator matrix in (3-9) as follows:

1

2

3

1 2

1 3

2 3

11 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

(2,3) 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0

x
x

G x
x x
x x
x x

=

 (3-10)

where the column in the right hand side is the corresponding monomial vector. The gen-

erator matrix for R(3,3) is obtained by adding the 1 2 3x x x term to the above and is given

by

1

2

3

1 2

1 3

2 3

1 2 3

11 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

(3,3)
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

x
x
x

G
x x
x x
x x

x x x

=

 . (3-11)

It must be noted that the (,)R r m encoding matrix can be achieved by adding

 rows to the
m
r

(1,)R r m− encoding matrix. Since the encoding matrix has rows, the

message is sent to the encoding matrix in blocks of length . If the message is defined as

k

k

m = (, (3-12) 1 2, ,.....,)km m m

then the encoded message cM is

1

k

c i
i

iM m R
=

= ∑
 (3-13)

where iR is the corresponding row of the encoding matrix.

18

3. Decoding Algorithm

The decoding algorithm is somewhat complicated and consists of a few steps. It is

based on majority logic or threshold decoding. In general, majority logic techniques are

fast and easy to implement.

An (,)R r m code can correct up to errors if the distance between two code

words is greater than 2e, where the distance is described as the number of different values

at the corresponding places between two code words.

e

Characteristic vectors are the vectors whose dot product is one with the corre-

sponding row and zero with all the other rows of the encoding matrix. The decoding algo-

rithm begins with finding characteristic vectors for each row of the encoding matrix.

After finding the characteristic vectors, the next step is the dot product of these character-

istic vectors with the received encoded message

2m r−

eM . This operation gives results

and, by performing the majority logic, the coefficient of the row is calculated. In other

words, if the number of the zeros is larger than the number of ones in the dot product op-

erations, the coefficient is zero and one otherwise. These steps thus far are performed for

every row of the encoding matrix except the first one. The coefficients are then multi-

plied with the corresponding row and the results are added. At this point,

2m r−

yM is obtained,

which is a row vector having 2 columns. The addition of m
yM and eM provides the loca-

tion of the error(s) and knowledge about the first row of the encoding matrix, that is,

whether it is all ones or all zeros. If the number of the ones in this row is larger than the

number of zeros, the first row of the matrix is all ones, otherwise it is all zeros. The 1’s

and 0’s so obtained form the recovered message. [1]

It must be noted that the error-correcting capability of the RM codes can be in-

creased by increasing the minimum Hamming distance.

4. Reduction of PAPR of COFDM Using RM Coding
While discussing the drawbacks of the COFDM system, it was mentioned that

high PAPR is the main disadvantage of the system.

19

Some research has been performed in order to reduce the PAPR in the COFDM

systems. One of the solutions to reduce PAPR requires the use of block codes. This ap-

proach is based on the selection of appropriate code words that reduce the PAPR, and

then the use of these code words. However, performing a long search to find these appro-

priate codes and the necessity for large lookup tables make this approach inefficient [14].

Another approach is based on introducing a specific phase, which is independent and

known to both the transmitter and the receiver for each coordinate of all the code words.

This approach obtained 4.5 dB in PAPR reduction by using the computed phase shifts

[10]. In this work, the use of RM codes in order to reduce PAPR is explored.

Davis and Jedwab in [15] showed that large sets of binary length of Golay

complementary pairs can be obtained from the certain second-order cosets of the first or-

der RM code. These cosets can be grouped according to their PAPR values for the codes

of lengths , where . The first group of cosets has a PAPR of at most 2.

The second one has a PAPR of at most 4 and so forth. An effective combination of the

code rate, PAPR and minimum distance can be obtained by selecting second-order cosets

from the list. This method can be efficiently used for the COFDM system for a small

number of carriers. For a larger number of carriers, it becomes inefficient since the

evaluation of PAPR values of a large set of cosets requires a large amount of computa-

tion. [15]

2m

2m 2,3,4,5m =

In summary, using RM codes with the COFDM system is expected to not only

provide efficient encoding and decoding algorithms and high error correction capability

with high code rates, but also to reduce PAPR, especially for a small number of carriers.

C. PEAK CLIPPING
Peak clipping is a simple approach to reduce the PAPR. Since the peaks in the

COFDM signal occur with a low probability, peak clipping can be considered an effec-

tive technique for the reduction of PAPR. However, it must be noted that it is a nonlinear

process and may worsen the BER performance due to the inband signal distortion. Addi-

tionally, it increases the out-of-band radiation and, therefore, reduces the frequency spec-

trum efficiency. The clipping ratio, CR, is defined by

20

CR A
σ

= (3-14)

where A is the clip level and σ is the rms power of the COFDM signal. The COFDM

signal is clipped whenever it exceeds the clip level.

D. HANNING WINDOWING
Hanning windowing is another approach to reduce the PAPR of COFDM signals.

The COFDM signal is multiplied by the window function when the signal exceeds the

clipping level or falls below the bottom level. While the clipping operation directly chops

off the peaks, windowing results in a smooth signal. The peak window is given by

1 (0.5 0.5cos(2 /)) 0
[]

0 o
c

c

k n M
w n

π− − ≤ ≤
=
 therwise

n M

therwise
n M

 (3-15)

where is the attenuation factor of the window and M is the width of the window. The

bottom window is given by

ck

1 (0.5 0.5cos(2 /)) 0
[]

0 o
a

c

k n M
w n

π+ − ≤ ≤
=

 (3-16)

where is the amplification factor of the window. Figure 9 shows a 9-point peak and a

9-point bottom Hanning windows. [2]

ak

Figure 5. 9-Point Hanning Windows

21

When the windows are multiplied with the COFDM signal, the resulting spectrum

is the spectrum of the windowed signal. Therefore, the window width is an important pa-

rameter that affects the BER performanceof the system.

This chapter discussed the error correcting coding schemes. The RM coding

scheme was presented in detail. The RM coding is known to reduce the PAPR, which is a

problem of the COFDM systems. The encoding and decoding algorithms of RM codes

were presented. Peak clipping and Hanning window techniques were explained. The next

chapter presents the COFDM simulation architecture and reports the results of simula-

tion.

22

IV. SIMULATION RESULTS

This chapter describes the simulation model used in this thesis and presents the

simulation results. The MATLAB simulation code in [1] was modified and expanded to

implement the simulation model. Simulations were performed to study the system per-

formance with RM codes under a variety of channel conditions. The system was also

tested for PAPR reduction. In addition to the RM codes, peak clipping and Hanning win-

dowing were implemented in order to reduce the PAPR.

A. SIMULATION MODEL
Since the main goal of this thesis was to simulate the COFDM system by utilizing

RM codes, all signal processing including forward error correction coding (FEC) and dif-

ferent types of channel characteristics are performed at the base band. The block diagram

of the entire system is shown in Figure 6. A detailed description of the different

MATLAB functions corresponding each of the blocks in Figure 6 is provided in Appen-

dix A.

Message
generator FEC coding Interleaver Symbol

reformatter

Differential
BPSK/QPSK

Channel encoder

IFFT
processing

Guard Interval
insertion

Channel

Decoded
message

FEC
decoding Deinterleaver Symbol

reformatter

Differential
Decoding

Symbol mapping

FFT
processing

Guard Interval
removal

Message
generator FEC coding Interleaver Symbol

reformatter

Differential
BPSK/QPSK

Channel encoder

IFFT
processing

Guard Interval
insertion

Channel

Decoded
message

FEC
decoding Deinterleaver Symbol

reformatter

Differential
Decoding

Symbol mapping

FFT
processing

Guard Interval
removal

Figure 6. COFDM System Block Diagram.

B. SIMULATION PARAMETERS

During the simulations, in order to compare the results, the same random message

was used. The seed value in msg.m was changed only for comparing the PAPR values of

the system with different random messages. Although the code makes it possible to select

a different number of symbols and interleaver pairs, all simulation runs were performed

23

with 12,000 symbols and a (120, 100) interleaver pair. While testing the convolutional

codes, the IEEE 802.11a standard half-rate convolutional codes with k = 50 and = 100

were performed.

n

After construction of the subblocks and modification of the code in [1], five dif-

ferent channels were formed. Channel 0 is a noise-free channel with no AWGN and mul-

tipath effects. Channels 1, 2 and 3 incorporate AWGN, multipath, and AWGN and multi-

path, respectively. Channel 4 incorporates the outdoor channel characteristics of AWGN,

severe multipath, and mobility.

In Channel 1, the standard deviation σ of white Gaussian noise is varied from 0

to 0.06 for different coding options.

The multipath fading parameters used in Channels 2 and 3 are tabulated in Table

1. The multipath loss in dB and the delay in ms are listed for indoor channel environment.

There are 18 taps and delay coefficients in the channel. Three different Doppler frequen-

cies of 5 Hz, 10 Hz, and 15 Hz were considered; the corresponding velocities of these

frequencies were 0.29, 0.58 and 0.87 m/s, respectively. They represent walking speeds in

an indoor environment.

Loss (dB)
[0, 2.17, 4.34, 6.51, 8.69, 10.86, 13.03, 15.20, 17.37,
19.54, 21.71, 23.89, 26.06, 28.23, 30.4, 32.57, 34.74,
36.92]

Delay (msec) [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85]
5
10 Doppler (Hz)
15

Table 1. Multipath Fading Parameters for Channels 2 and 3

The outdoor channel parameters of Channel 4 are shown in Table 2. Within this

channel, two different cases each with different loss, delay and Rician factors are imple-

mented.

 Channel 4A Channel 4B

Loss (dB) 0.0, 1.0, 9.0, 10.0, 15.0,
20.0 2.5, 0.0, 12.8, 10, 25.2, 16

Delay (msec) 0.0, 0.25, 0.5, 1.0, 1.9,
2.2 0.0, 0.25, 9.0, 13.0, 17.0, 20.0

Rician Factors (%) 0, 0, 0, 0, 0, 0 0.5, 0.5, 0, 0, 0, 0
Table 2. Outdoor Channel Parameters of Channel 4

24

In order to analyze the effects of using RM codes in the COFDM system for both

indoor and outdoor channel characteristics, a step-by-step simulation methodology was

followed. The performance of the COFDM system with RM codes is tested under differ-

ent conditions in the order presented in Table 3.

Test No. Channel Channel Description
1 Channel 0 Noise-free Channel
2 Channel 1 AWGN effect
3 Channel 2 Multipath effect
4 Channel 3 AWGN + Multipath effect
5 Channel 4 Severe mobile outdoor channel

Table 3. General Test Plan.

C. SIMULATION RESULTS

Channel 0 was used to test whether the system was configured properly and work-

ing correctly. In this case, the received message is the same as the source message. Nu-

merous simulations performed for different types of RM and convolutional codes demon-

strated that the code ran correctly. Figure 7 shows the transmitted and received QPSK

constellations.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Transmitted Signal 4-ary Constellation Plot

Magnitude=1
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
Received 4-ary Signal Constellation Plot, AFTER Differential Decoding

Magnitude=1
(a) Transmitted (b) Received

*

*

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Transmitted Signal 4-ary Constellation Plot

Magnitude=1
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
Received 4-ary Signal Constellation Plot, AFTER Differential Decoding

Magnitude=1
(a) Transmitted (b) Received

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Transmitted Signal 4-ary Constellation Plot

Magnitude=1
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
Received 4-ary Signal Constellation Plot, AFTER Differential Decoding

Magnitude=1
(a) Transmitted (b) Received

*

*

*

*

*

*

Figure 7. Transmitted and Received QPSK Signal Constellations for Channel 0.

25

The performance of the COFDM system is next tested using Channel 1, which in-

cludes AWGN without multipath fading effects. The received QPSK constellations for

different levels of noise are shown in Figure 8.

0.001σ = 0.004σ =0.001σ = 0.004σ =

0.009σ = 0.02σ =0.009σ = 0.02σ =0.009σ = 0.02σ =
Figure 8. The Effects of AWGN over QPSK Signal Constellation.

The BER plots were obtained for different types of RM codes and convolutional

codes. The number of errors that an (,)R r m code can correct depends on the and

values. The number of the errors that different types of RM codes can correct is tabulated

in Table 4. The bit-error plots for three different RM codes and a rate

r m

1 convolutional

code along with the QPSK theoretical plots are shown in Figure 9.

2

26

Type of
code

Number of the rows
(number of the bits in a

block)

Number of the er-
ror(s) that can be

corrected
Rate

(,)R r m 1
1 2
m m m

k
r

= + + + +

12 1m r− − −

12 1m r

k

− − −

R (1,3) 4 1
1 0.25
4
=

R (2,4) 11 1
1 0.0909
11

=

R (2,5) 16 3
3 0.1875

16
=

Table 4. The Number of the Error(s) that Different Types of RM Codes Can Correct.

Figure 9. BER Performance of the COFDM system under Channel 1 (AWGN only)

Conditions.

From Figure 9 and Table 4, the performance of an RM code depends on the num-

ber of error(s) that it can correct in a block. Since this rate is worst for R (2,4), the corre-

sponding BER performance curve was also the worst. Compared to the theoretical, there

is 2.5 dB difference for convolutional code, 2.7 dB for R(1,3), 3.6 dB for R(2,5) and 4.8

dB for R(2,4) at . 210bP −=

27

1. Multipath Effects

The performance of the COFDM system was studied by adding multipath effects

to the channel. First, multipath effects without AWGN were simulated using Channel 2.

Figure 10a shows the received QPSK constellation. The constellation points are scattered

from their original position due to the effects of multipath fading. Figure 10b shows that,

with the addition of differential decoding, the constellation points realigned somewhat

within their respective spaces.

(a) Before differential decoding (b) After differential decoding(a) Before differential decoding (b) After differential decoding
Figure 10. The Effects of Multipath on QPSK Signal Constellation

Channel 3 takes AWGN, multipath effects, and Doppler shift into account, hence

more realistic than Channel 2. Channel 3 may be considered a good representation for

indoor environments. Figure 11 shows the magnitude of the QPSK signal at the input of

the receiver. The magnitude is plotted for different symbols at different subcarriers for an

AWGN standard deviation of 0.02σ = . Note that ideally the magnitude is a constant for

all symbols at all subcarriers. Figures 12 and 13 show the QPSK constellation prior to

and after the differential decoding. QPSK constellation points are shifted from their

original phase sectors because of the effects of multipath fading. The spreading of the

constellation points increases with the noise variance. As Figure 13 illustrates, the con-

stellation points can be realigned to their respective phase sectors to some extent by using

differential decoding.

28

0.02σ = 0.02σ = 0.02σ =
Figure 11. The Representation of COFDM Signal Under Multipath and AWGN Ef-

fects.

0.001σ = 0.02σ =0.001σ = 0.02σ =
Figure 12. The Effects of AWGN and Multipath on QPSK Signal Constellation Be-

fore Differential Decoding

29

0.001σ = 0.02σ =0.001σ = 0.02σ =
Figure 13. The Effects of AWGN and Multipath on QPSK Signal Constellation After

Differential Decoding

Figures 14-16 show the bit-error rate plots for three different Doppler shift values.

Each figure contains three different types of RM codes and a rate 1 convolutional code.

The BER performance curves show that the effect of the 5-Hz Doppler frequency creates

slight difference in the BER performance of the system. As seen, the preformence of the

convolutional coder is better than that of the RM codes.

2

30

Figure 14. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 5-Hz Doppler Conditions

Figure 15. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 10-Hz Doppler Conditions
31

Figure 16. BER Performance of the COFDM system under Channel 3 (AWGN +

Multipath Effect) with 15-Hz Doppler Conditions

2. Outdoor Environment
We now study the COFDM system performance under mobile outdoor channel

conditions. Two channels were considered for this purpose: Channels 4A and 4B.

Figure 17 shows the COFDM signal magnitude for Channels 4A and 4B for

0.02σ = . Although the transmitted COFDM signal magnitude was at unity, the multi-

path fading, delay, and Rician factors in the channels resulted the noticeable signal varia-

tions in received signal power levels. The corresponding QPSK constellations are shown

in Figure 18. Figure 18 shows that constellation points were scattered from their original

points due to the multipath fading, delay, and Rician factors of the channels. Figure 19

shows the QPSK constellations after the differential decoding for Channels 4A and 4B.

Compared to the constellation points in Figure 12, which includes multipath effects in

AWGN, the signal constellation points in Figure 18 underwent more severe multipath

fading.

32

(a) Channel Model 4A (b) Channel Model 4B(a) Channel Model 4A (b) Channel Model 4B
Figure 17. The Effects of Channel 4 on Signal Magnitude.

(a) Channel Model 4A (b) Channel Model 4B(a) Channel Model 4A (b) Channel Model 4B
Figure 18. The Effects of Channel 4 on Signal Constellation (Before Differential De-

coding).

33

(a) Channel Model 4A (b) Channel Model 4B(a) Channel Model 4A (b) Channel Model 4B
Figure 19. The Effects of Channel 4 over Signal Constellation (After Differential De-

coding).

Figures 20 and 21 show the BER plots for Channel 4. In order to obtain a BER

less than 10-2, the bE No value should be higher than about 10 dB for RM codes and 5

dB for convolutional codes. This result shows that the COFDM system requires high sig-

nal-to-noise ratio in the outdoor environments.The necessity of high transmission power

for Channels 4A and 4B creates the PAPR problem. The results of the PAPR values for

the system are presented in the next section.

34

Figure 20. BER Performance Curves for Channel 4A Simulation.

35
Figure 21. BER Performance Curves for Channel 4B Simulation.

3. PAPR Reduction

The PAPR values of the COFDM system simulated using different seeds to gen-

erate the random messages are tabulated in Table 5. The RM codes used in this work are

R(1,3), R(2,4), and R(2,5). The RM codes in general are not consistent in reducing the

PAPR in COFDM. This result does not agree with the claim in [15].

PAPR (dB)
Seed = 13 Seed = 23 Seed = 33 Average

FEC
Code
Type Max Ave Max Ave Max Ave Max Ave
R(1,3) 9.4734 6.7845 10.3031 6.6575 10.7564 9.9686 10.1776 7.8035
R(2,4) 9.2566 6.7392 9.5706 6.9064 9.5816 6.8251 9.4696 6.8235
R(2,5) 11.4281 6.7306 9.6601 6.7231 9.9839 6.6464 10.3573 6.7000
CONV. 10.0090 6.9200 9.4433 6.5059 10.0320 6.7182 9.8281 6.5347

Table 5. PAPR Values without Windowing and Peak Clipping.

Peak clipping and Hanning windowing were used to reduce the PAPR. It can be

seen that peak clipping reduced PAPR by 3 dB. However, the reduced PAPR value intro-

duced a high BER as can be seen in Figure 22. This presents a tradeoff between PAPR

reduction and BER performance.

Table 6 shows the results when the COFDM signal was clipped at 18 through 12.

From Figure 22, the BER performance of the system at CL = 18 is very close to no-

clipping performance. However, as the peak clipping level is decreased, the required

bE No to achieve the same BER performance increased because of the increasing prob-

ability of existence of the COFDM signal magnitudes higher than the clipping level.

PAPR(dB)
Seed=33

Max average
No Clipping 10.7564 9.9686

CL=18 10.4895 6.9636
CL=16 9.5959 6.9440
CL=14 8.5536 6.8727
CL=12 7.3191 6.4491
Table 6. Peak Clipping Results.

36

Figure 22. BER Performance of the System with Peak Clipping.

Hanning windowing was also implemented to reduce the PAPR. The values of

 and were assigned as Hanning windows coeffiecients during the simu-

lations to achieve the best performance.

0.1ck = 0.2ak =

When the windows were applied to the COFDM signal, the resulting spectrum

was the spectrum of the windowed signal. The windowing process was tested with 3-, 5-

and 9-point Hanning windows. The PAPR values are shown in Table 7 and BER per-

formance plots are shown in Figures 23 through 25 for 3-, 5-, and 9-point windows, re-

spectively. Table 7 shows that the improvement in PAPR reduction is limited with Han-

ning windowing. Figures 23 through 25 show that as the width of the window is in-

creased, the bit errors increased as well.

37

PAPR(dB)
Seed = 33 Seed = 23

3-point Hanning
Windowing

5-point Hanning
Windowing

9-point Hanning
Windowing

9-point Hanning
windowing

 Max Ave Max Ave Max Ave Max Ave
No win-
dowing 10.7564 6.9686 10.7564 6.9686 10.7564 6.9686 10.3031 6.6575

CR=1,4 9.9869 6.4219 10.0097 6.5186 10.0486 6.4939 9.6236 6.6020
CR=1,4
& B=1 9.9144 6.4307 9.8565 6.4740 9.7377 6.5390 9.1957 6.2795

CR=1,4
& B=1.5 9.9004 6.4102 9.8284 6.4701 9.6647 6.5507 11.4741 6.3601

CR=1,4
& B=2 9.8716 6.4346 9.7694 6.5206 9.7151 6.6559 11.3221 6.4451

Table 7. The Results of 3, 5, 9-Point Hanning Windowing.

Figure 23. BER Performance of the System with 3-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom Level)

38

Figure 24. BER Performance of the System with 5-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom Level)

Figure 25. BER Performance of the System with 9-Point Hanning Windowing (CR:

Clipping Ratio, B: Bottom level)

39

This chapter studied the simulation performance of the COFDM system and pre-

sented the BER performances of the system under four channels. The effects of AWGN,

multipath, and AWGN and multipath effects over QPSK constellations were examined.

As the main of goal of this thesis, the chapter also presented the performance of the

COFDM system under mobile outdoor channel conditions. The roles played by RM

codes, peak clipping, and Hanning windowing on PAPR reduction were also reported.

40

V. CONCLUSION

In this thesis, a COFDM based digital communication system with Reed-Muller

error correction coding was successfully simulated. Three different types of RM codes

and, for comparison, a rate one-half convolutional code were investigated through simu-

lation studies using QPSK modulation type.

In order to test the COFDM system in both indoor and outdoor channel environ-

ments, we created a step-by-step test methodology. Using four different simulation steps,

both indoor and outdoor channel characteristics were studied. The bit-error performance

curves for each of the RM codes and the convolutional code were obtained.

Also, Hanning windowing and peak clipping techniques were investigated for re-

ducing the PAPR in OFDM systems.

A. CONCLUSIONS
The results showed that the COFDM system is robust in indoor channel environ-

ments. However, for the outdoor channel environments, the system requires higher sig-

nal-to-noise ratios (SNR) to achieve the same bit-error rate (BER) performance as in the

case of the indoor channel. Also, BER performance curves showed that the RM codes

provide better performance in indoor channel environment at low SNR. However, convo-

lutional codes provide better performance in the outdoor channel environments.

Reed-Muller codes are straightforward to implement, and they provide a wide

range of coding options. However, RM codes did not provide the expected improvement

in PAPR reduction as claimed by [15]. The results showed that they have almost the same

performance in PAPR reduction as convolutional codes.

The addition of Hanning windowing and peak clipping improve PAPR reduction,

improvement with Hanning windowing is limited. The results showed that, as the width

of the window is increased, the bit-errors increased as well. Peak clipping provides con-

siderable reduction in PAPR but at the cost of increased bit error. This presents a tradeoff

between the PAPR reduction and the BER performance.

41

B. FUTURE WORK

The performance of a COFDM based digital communication system with three

different Reed-Muller codes has been successfully examined in this thesis. However,

simulating the system with different (r, m) pairs would be of interest. We recommend that

the RM codes be further investigated to find optimal (r,m) pairs to provide improvement

in PAPR reduction.

In the simulations, we used QPSK modulation technique. In future work, 16- and

64-QAM modulation techniques may be used. Therefore, M-ary QAM can be examined

in a future work.

As described in Chapter II, COFDM based digital communication systems suffer

from frequency offset and are sensitive to time and frequency synchronization. The ef-

fects of frequency errors in a COFDM system are analyzed in [6]. The work in this thesis

and that in [6] can be combined to analyze the effects of Reed-Muller error correction

coding on frequency errors.

It is well known that the performance of a decoder is significantly increased with

soft decision decoding. Therefore, in addition to the hard decision decoding technique

used in this thesis, a COFDM system can be analyzed with a decoder utilizing a soft deci-

sion decoding technique.

42

APPENDIX A. SIMULATION-ARCHITECTURE

The MATLAB m-files used in the simulation are described in this chapter. In or-

der to achieve the purpose of this thesis, the COFDM simulation code in [4] was modi-

fied and adopted. Since some of the subroutines in [4] were modified and some were di-

rectly used in the MATLAB programming, citation to [4] was intentionally omitted in the

text in this appendix.

A. GENERAL STRUCTURE OF MATLAB PROGRAMMING

Since the main goal of this thesis was to simulate the COFDM system by utilizing

RM codes, all signal processing including forward error correction coding (FEC) and dif-

ferent types of channel characteristics were performed at the baseband.

1. COFDM Transmitter
The transmitter part of the COFDM system is shown in Figure 26. The subblocks

of the transmitter are explained in the following discussion.

Message
generator FEC coding Interleaver Symbol

reformatter

Differential
BPSK/QPSK

Channel encoder

IFFT
processing

GI
insertion

Baseband signal
transmitted to

the channel

Message
generator FEC coding Interleaver Symbol

reformatter

Differential
BPSK/QPSK

Channel encoder

IFFT
processing

GI
insertion

Baseband signal
transmitted to

the channel
Figure 26. COFDM Transmitter Block Diagram.

a. Message Generator
This block generates a random bit sequence representing the data bits. The

length of the message is variable and selected by the user. In order to use the same ran-

dom message in different simulations, a seed parameter is used in this subblock. As long

as the seed value remains the same, the message generator generates the same random

message and makes it possible to run the simulation with different parameters and com-

pare the results for the same information bit sequence.

43

b. FEC Coding

As described in Chapter III, in the IEEE 802.11a standard, data are en-

coded with a convolutional encoder with the coding rate 1 2, 2 3r = , or 3 4 . The convo-

lutional encoder uses the half-rate industry-standard generator polynomials,

and [7]. In addition to convolutional codes used in the simulation in [4], RM

codes are also used in this thesis. The simulation allows the user to choose either one of

these two FEC code types or no FEC code. If the convolutional codes are chosen, the n

and k of the code are chosen by the user. If the RM codes are desired, the r and m pair is

chosen by the user.

0 8133g =

1 171g = 8

c. Interleaver
After determining the length of the message sequence, the simulation pro-

gram presents all possible interleaver pairs on the screen. According to the interleaver

dimension selected by the user, the block interleaver takes a block of encoded bits and

permutes them as described in Chapter II.

d. Symbol Reformatter
Since binary phase shift keying (BPSK) or quaternary phase shift keying

(4-PSK or QPSK) can be used in the simulation, the symbol reformatter block resizes the

symbol lengths as 1-bit or 2-bit in order to form the BPSK or QPSK signal format.

e. Differential Encoder

Before the symbols are mapped into the signal, differential encoding is

performed. Differential encoding is based on a cumulative summation. Cumulative sum-

mations are performed by adding in the modulo-N format. If the frequency differential

encoding is performed, then the differential encoding is accomplished along the row vec-

tors of the complex-valued modulation matrix. The first element is added to the second

element in the row, and the result is replaced as the second element. The first, second and

third elements are added and replaced as the third element and this operation is repeated

44

until all elements in the row are completed. If the time differential encoding is performed,

this operation is accomplished along the column vectors of the complex-valued modula-

tion matrix.

f. IFFT Processing
The N-point IFFT operation is performed in order to convert the frequency

domain data into the time domain. Although 64N = is used for all the tests in this thesis,

this value can be changed in the cofdmsim.m macro file.

g. Guard Interval Insertion
In order to eliminate the ISI and ICI effects, 16 time domain samples are

added to the output of the IFFT processor in the IEEE 802.11a standard. In this simula-

tion, this value remains fixed at 16 as in the standard. However, if it is necessary to ex-

tend this value in order to eliminate the more severe ISI or ICI effects, this value can be

changed in the program.

2. COFDM Receiver
The operations in the receiver part of the system are the inverse operations of the

transmitter. The receiver part of the system is shown in Figure 27. The subblocks of the

receiver are explained below.

Decoded
message

FEC
decoding Deinterleaver Symbol

reformatter

Differential
Decoding

Symbol mapping

FFT
processing

GI
removal

Received
baseband

signal

Decoded
message

FEC
decoding Deinterleaver Symbol

reformatter

Differential
Decoding

Symbol mapping

FFT
processing

GI
removal

Received
baseband

signal
Figure 27. COFDM Receiver Block Diagram.

a. Guard Interval Removal
The time domain samples added in the transmitter to reduce or remove the

ISI and ICI effects are removed in this block in order to pass the actual information block

to the sunsequent subblocks for processing.

45

b. FFT Processing
The N-point FFT operation is performed to convert the time domain data

into the frequency domain. Due to the multipath effects of the transmission channel, the

orthogonality of the carriers may be distorted. Therefore, the output of the FFT processor

can be an array of complex values.

c. Differential Decoding and Symbol Reformatting
According to the selection of frequency domain or time domain encoding,

the correponding differential decoding is performed in the receiver. After decoding, the

rows or columns of ones added by the differential coding operation in the transmitter are

removed and symbols are reconstructed according to the magnitude and the phase of re-

ceived complex values, which are the output of the FFT processor.

d. Deinterleaver
The output of the symbol reformatter is deinterleaved to obtain the actual

message order. Thus, the burst errors caused by the noisy channel are distributed, and

these randomly distributed errors are sent to the FEC decoder.

e. FEC Decoder
Depending on the coding type used in the transmitter, either the Viterbi

decoder or RM decoder decodes the signal received from the deinterleaver.

f. Decoded Message

The output of the FEC decoder is the received information message. At

this point, depending on the channel characteristics and the capability of the FEC decod-

ing, some symbol errors may still occur. In order to present the performance of the entire

system, the BER is calculated and illustrated by the BER versus 0bE N graphs. Addi-

tionally, the PAPR values are also calculated and tabulated.

46

3. Channel Models

In this simulation, five different channels are used. Channel 0 is a noise-free

channel and is performed to verify whether or not the MATLAB coding works appropri-

ately. Channel 1 is an AWGN channel. Channel 2 is the multipath channel that is charac-

terized by frequency selective fading in dB and multipath delays in microseconds. For

this channel, Doppler shifts of 5 Hz, 10 Hz and 15 Hz were used. Additionally, a custom

channel can be configured in accordance with the loss, frequency shifting and delay val-

ues entered by the user. Channel 3 is the combination of Channels 1 and 2, i.e., it has

both AWGN and multipath channel characteristics. Channel 4 represents a mobile out-

door channel that includes AWGN and severe multipath effects. For this channel, two

sets of parameters are used having different delays, fading, and Ricean factors. The char-

acteristics of the channels are listed in Table 8.

Multipath Effects Channel Link Num-
ber Noise Fading Doppler Delay

#0 - - - - -
#1 X - - - -

1 5 Hz
2 10 Hz
3

X
15 Hz

X #2

4

-

Customizable
1 5 Hz
2 10 Hz
3

X
15 Hz

X #3

4

X

Customizable
A X X #4 B X X

Table 8. Channel Characteristics.

B. MATLAB PROGRAMMING DETAILS

As described in the previous section, the simulation consists of three main blocks

which are the receiver, channel and transmitter. The main subroutine of the simulation is

chancdl.m, which first calls cdrcdlft.m for the transmission processing and then calls a

number of subroutines for the different types of channels and finally calls decdrcdl.m for

the receiver processing. The schematic arrangement of the simulation is shown in Figure

28.

47

TRANSMITTER

cdrcdlft.m tda.m

C
H
A
N
N
E
L

RECEIVER

decdrcdl.mitda.m
Message

to be
transmitted

Received
message

Message
encoding

IFFT
Processing

FFT
Processing

Message
decoding

TRANSMITTER

cdrcdlft.m tda.m

C
H
A
N
N
E
L

RECEIVER

decdrcdl.mitda.m
Message

to be
transmitted

Received
message

Message
encoding

IFFT
Processing

FFT
Processing

Message
decoding

Figure 28. General Arrangement of the COFDM System.

In the transmitter part of the system, message encoding is performed by cdrcdlft.m

and conversion from frequency domain to time domain and guard interval insertion is

performed by tda.m. The inverse operations are performed by itda.m and decdrcdl.m in

the receiver. The m-file itda.m is responsible for the guard interval removal and conver-

sion to the frequency domain. The message decoding is performed by decdrcdl.m. The

details of these m-files are given in the next subsection.

1. COFDM Transmitter
The arrangement of the m-files that interact with cdrcdlft.m are shown in Figure

29.

48

marymsg.mbm.m

msg.m

gm_part1.m

msg.m conv_encd.m

Unless the message is
to be coded

with RM encoder

If the message is
to be coded

with RM encoder

rmencoder.m

rmgenmat.m

rotm.m

cdlilv.m

diffcdrft.m

bm.m

Convolutional codes or no coding

Reed-Muller codes

cdrcdlft.m

mb.m

cmv2fa.m

marymsg.mbm.m

msg.m

gm_part1.m

msg.m conv_encd.m

Unless the message is
to be coded

with RM encoder

If the message is
to be coded

with RM encoder

rmencoder.m

rmgenmat.m

rotm.m

cdlilv.m

diffcdrft.m

bm.m

Convolutional codes or no coding

Reed-Muller codes

cdrcdlft.m

mb.m

cmv2fa.m

marymsg.mbm.m

msg.m

gm_part1.m

msg.m conv_encd.m

Unless the message is
to be coded

with RM encoder

If the message is
to be coded

with RM encoder

rmencoder.m

rmgenmat.m

rotm.m

cdlilv.m

diffcdrft.m

bm.m

Convolutional codes or no coding

Reed-Muller codes

cdrcdlft.m

mb.m

cmv2fa.m

Figure 29. The Arrangement of the Macro Files within the cdrcdlft.m.

A random message of length k is generated by msg.m. The length k depends on

the number of the symbols chosen by the user and the parameter q, which represents the

number of bits that construct each M-ary symbol, where 2qM = . The seed parameter s

makes it possible to test the system with a different parameter but the same random mes-

sage for comparing the results. After the random message sequence is created, it is en-

coded by cnv_encd.m or rmencoder.m depending on whether convolutional codes or RM

codes are chosen by the user. If the FEC coding is not performed, cnv_encd.m is per-

formed with the same n and k values. (Note that the parameter k here is not the length of

the message, but represents the input block length of the convolutional encoder.) If RM

codes are selected, the monomial vectors of the RM encoding matrix are created by

gm_part1.m and the remaining rows of the encoding matrix are created by rmgenmat.m,

using the monomial vectors. After that, the message sequence is coded by rmencoder.m.

If convolutional codes are selected, the message sequence is coded by conv_encd.m. Af-

ter FEC coding, the coded bit sequence is returned back to marymsg.m, which then calls

bm.m to form symbols by grouping q-bits together to create M-ary symbols. The output is

49

a vector of equivalent decimal numbers. The macro marymsg.m calculates these values

using the other subroutines according to the input parameters q, n, m, ecc, r_rm, and

m_rm where n is the number of the rows and m is the number of the columns of the over-

all output message matrix. The parameter ecc represents the FEC coding option, that is,

the convolutional codes or RM codes, and r_rm and m_rm parameters are the r and m

values of the (,)R r m code. (The parameter m also represents the number of the COFDM

frequency tones. It must be an even positive integer in order to completely fill the as-

signed bandwidth.) After the coded symbol values are returned back to cdrcdlft.m, this

function calls the subroutine cdlilv.m to interleave the array. The subroutine parameters

are l, k, dcase, s and sync, where l represents the number of the rows and k represents the

number of the columns in the interleaver matrix. The parameter dcase is a variable indi-

cating the interleaving method to be used. Although there are nine cases in the simulation

program, only dcase 0, which indicates the simple interleaving, is performed in this thesis

and the others are beyond the scope of this thesis. The parameter s represents the input

message to be interleaved and sync represents the frame synchronization bits. However,

this parameter was also not used in this thesis.

The interleaved message array is converted from the M-ary to N-ary format for

the N-PSK modulation. Although QPSK is used in this thesis, this value remains as a

variable for different PSK modulation types. This conversion is conducted by bm.m and

mb.m. The signal in the M-ary format is first converted to binary by mb.m and then con-

verted to the N-ary format by bm.m.

The message array that is interleaved and converted from M-ary to N-ary is then

differentially encoded since the message array symbols are represented in decimal nota-

tion. The transition of symbols to complex values is performed by difcdrft.m. The output

of this subroutine is an array that represents the differentially encoded complex values.

The symbol-to-complex modulation value mapping is performed in two ways depending

on whether the differential encoding is processed in time or frequency.

The last subroutine used within cdrcdlft.m is cmv2fa.m, which takes the complex

valued array M and the number of the FFT points N as inputs and arranges M into a fre-

quency array. The output is the shifted frequency array, which has padded zeros in the

50

middle of the array. The number of these zeros is equal to the difference between the

number of FFT points and the number of the complex values. Although RF conversion

and filtering is not included in this simulation, the padded zeros are considered as a guard

band for the filter slopes. At this point, cdrcdlft.m completes its task and sends the fre-

quency array to chancdl.m.

In order to generate the COFDM frequencies, the macro file tda.m is called by

chancdl.m. The IFFT operation is performed on complex modulation frequency array by

tda.m, and the periodic guard interval is also inserted. The input parameter gN is the

number of the additional time domain samples added to the beginning of the information

symbol interval as described in Chapter II. The output of this subroutine is the time do-

main samples prepared to be transmitted through the channel.

The input and output parameters of the subroutines that performed in the transmit-

ter part of the COFDM simulation are listed in Table 9.

The name of
the subroutine

Which pro-
gram calls Input parameters Output parameters

cdrcdlft.m chancdl.m
picy_n, pic, dcase, s,
freqno, rintlv, N,
mary,nary,fort

Fa, MD, B_ce,
B_random, nsymno

marymsg.m cdrcdlft.m q, n, m, ecc, r_rm, m_rm vmary_ce, random_bit,
enc_output

bm.m cdrcdlft.m,
marymsg.m

q, v m

msg.m marymsg.m k u
cnv_encd.m marymsg.m ce_g, ce_k0,ce_input ce_output
rmencoder.m marymsg.m r, m, msg1 encd_msg
rmgenmat.m rmencoder.m r, m GM, k
gm_part1.m rmgenmat.m m bb

cdlilv.m cdrcdlft.m l, k, dcase, s, SYNC si
rotm.m cdlilv.m v, m vp, vn
mb.m cdrcdlft.m q, m b

diffcdrft.m cdrcdlft.m q, m, fort MD
cmv2fa cdrcdlft.m N, M X

Table 9. The Input and Output Parameters of the Subroutines Run within the Transmitter
Part of the COFDM Simulation.

51

2. COFDM Receiver

The various m-files used in the simulations of the COFDM receiver and their in-

teractions are shown in Figure 30. The receiver operations are the inverse of those in the

transmitter.

decdrcdl.m
fa2cma.m

dfdcdrft.m

bm.m cdldlv.m

rotm.m

mb.m

viterbi.m

nxt_stat.m

bin2deci.m deci2bin.m

bin2deci.m

deci2bin.m

bm.m rmdecoder.m

rmgenmat.m

gm_part1.m

WW_mat2.m

inverse.m

dot_pro.m

Unless the message is
coded with RM encoder

If the message is
coded with RM encoder

Convolutional codes or no coding Reed-Muller codes

decdrcdl.m
fa2cma.m

dfdcdrft.m

bm.m cdldlv.m

rotm.m

mb.m

viterbi.m

nxt_stat.m

bin2deci.m deci2bin.m

bin2deci.m

deci2bin.m

bm.m rmdecoder.m

rmgenmat.m

gm_part1.m

WW_mat2.m

inverse.m

dot_pro.m

Unless the message is
coded with RM encoder

If the message is
coded with RM encoder

Convolutional codes or no coding Reed-Muller codes

Figure 30. The Arrangement of the Macro Files within the decdrcl.m.

The complex modulation array is obtained from the frequency array by using

fa2cma.m. The input parameters are X and K where X is the complex frequency array to

be rearranged and K is half the number of COFDM frequency tones. The output parame-

ter Mn is the complex modulation array of actual interleaved frequencies. After the fre-

quency array is reconstructed into the complex array, the complex modulation values are

differentially decoded into N-ary symbols by dfdcdrft.m. All reference ones added in the

transmitter are removed, and the remaining received message matrix is decoded. The in-

put parameters MD, fort, q and qp, where MD is the complex modulation values as the

output of the m-file fa2cma.m and q is the number of bits in a symbol according to the N-

ary format. The parameter fort represents whether the differential coding is performed in

frequency or time. The output parameters of this m-file are s and M, where s represents

the corresponding mapped symbols in decimal format and M is the differentially decoded

modulation array. In order to convert the modulation array values from N-ary to M-ary,

52

values are converted from N-ary to binary by mb.m and binary to M-ary by bm.m. The m-

file cdldlv deinterleaves. The input parameter si represents the received interleaved mes-

sage array and the other parameters are the same on the ones in cdlilv.m. The m-file

rotm.m is called by cdlilv.m to rotate the array.

The input and output parameters of the subroutines used in the receiver part of the

COFDM simulation are listed in Table 10.

The name of the
subroutine

Which program
calls Input parameters Output parameters

decdrcdl.m Chancdl.m

picy_n, pic, dcase, K, Fa,
nsymno, freqno, rdintlv,
cdintlv, mary, nary, fort,
B_random, ecc, r_rm,
m_rm

outmsg, de-
coder_output,_bit, ran-
dom_msg, random_bit,
M, MM, binary_value

fa2cma.m decdrcdl.m K, X Mm
dfdcdrft.m decdrcdl.m qp, q, MD, fort s, M

bm.m decdrcdl.m q, v M
cdldlv.m decdrcdl.m l, k, dcase, si, SYNC s
rotm.m cdldlv.m v, m vp, vn
mb.m decdrcdl.m q, m b

viterbi.m decdrcdl.m v_G, v_k, channel_output
decoder_output, survi-
vor_state, cumu-
lated_metric

nxt_stat.m viterbi.m current_state, input, v_L,
v_k

next_state, mem-
ory_contents

bin2deci.m nxt_stat.m,
viterbi.m v_x v_y

deci2bin.m nxt_stat.m,
viterbi.m x, l y

rmdecoder.m decdrcdl.m Me, r, m Msg_decoded_line
rmgenmat.m rmdecoder.m r, m GM, k

gm_part1 rmgenmat.m m bb
WW_mat2.m rmdecoder.m GM, r, m ,k WW1

inverse.m WW_mat2.m D d
dot_pro.m rmdecoder.m X, S z

Table 10. The Input and Output Parameters of the Subroutines Run within the Receiver Part
of the COFDM Simulation.

3. COFDM Channel

Figure 31 shows the m-files used to simulate the channel.

53

chancdl.m
cdrcdlft.m

tda.m

awgn.m

TRANSMITTER

CHANNEL MODEL 1

chuhf.m dline.m

cvdd.mofst.mraydop.m

CHANNEL MODEL 2 itda.m

CHANNEL MODEL 3

channel1.m

CHANNEL MODEL 4

jakes.m

decrcdl.m

itda.m

RECEIVERcheck.m

chancdl.m
cdrcdlft.m

tda.m

awgn.m

TRANSMITTER

CHANNEL MODEL 1

chuhf.m dline.m

cvdd.mofst.mraydop.m

CHANNEL MODEL 2 itda.m

CHANNEL MODEL 3

channel1.m

CHANNEL MODEL 4

jakes.m

decrcdl.m

itda.m

RECEIVERcheck.m

chancdl.m
cdrcdlft.m

tda.m

awgn.m

TRANSMITTER

CHANNEL MODEL 1

chuhf.m dline.m

cvdd.mofst.mraydop.m

CHANNEL MODEL 2 itda.m

CHANNEL MODEL 3

channel1.m

CHANNEL MODEL 4

jakes.m

decrcdl.m

itda.m

RECEIVERcheck.m

Figure 31. The Arrangement of the Macro Files within the chancdl.m.

The input parameters of the macro file chuhf.m are s, x, loss, dly, dop, N and

freqspace, where loss is the signal loss in dB, dly is the time delays in microseconds and

dop is the Doppler frequency shifting in Hz. Multipath delay effects are created by

dline.m and cvdd.m. The input array is filtered by a FIR filter whose coefficients are cre-

ated by cvdd.m according to the values in the array dly. As a next step, the Doppler shift

frequency is calculated by ray_dop.m according to the seed value s, freqspace and the

number of the FFT points N. The channel offset is calculated by ofst.m. Finally, the

power losses are calculated by multiplying each loss value in the array loss with the cor-

responding message value. The output of chuhf.m is a complex valued time domain array

including multipath effects.

Channel 3 is realized by using awgn.m and chuhf.m. Channel 4 is simulated by

channel1.m and jakes.m. The first subroutine calls the second and provides two severe

channels having different multipath effects. The selection of these two channels must be

conducted before running the simulation.

The input and output parameters of the subroutines simulating the channel part of

the COFDM simulation are shown in Table 11.

54

The name of
the subroutine

Which pro-
gram calls Input parameters Output pa-

rameters
awgn.m chancdl.m X, N, sigma Y

chuhf.m chancdl.m s, x, loss, dly, dop, N,
freqspace y

raydop.m chuhf.m s, M, N, es c
ofst.m chuhf.m e, N, x xo
dline.m chuhf.m x, d xd
cvdd.m dline.m x, alpha y

channel1.m chancdl.m xt yr
jakes.m channel1.m Fd, Fs, N g
itda.m chancdl.m Ng, y y

Table 11. The Input and Output Parameters of the Subroutines Run within the Channel Part
of the COFDM Simulation.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

APPENDIX B. COFDM MATLAB CODE

This appendix presents the MATLAB m-files used in the simulations. Descrip-

tions of the m-files here can be found in Appendix A.

AWGN

%AWGN

%TITLE : ADDITIVE WHITE GAUSSIAN NOISE

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%---
function Y = awgn(X,N,sigma)
%Find dimensions of the input array
[rr,cc]=size(X);
%Generate a random real part
seed=14;
randn('state',seed);
wreal=randn(rr,cc);
%Generate a random imaginary part
seed=seed+6;
randn('state',seed);
wimg=i*randn(rr,cc);
%An array of random complex entries chosen from a normal distribution with
%mean 0.0 and variance 1.0. Array dimension is the same as X.
W=wreal+wimg;
%Random noise multiplied by the sigma factor and added to the signal.
Y=X+(sigma.*W);
%---

57

BIN2DECI

%BIN2DECI

%TITLE : BINARY TO DECIMAL CONVERSION

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%---
function v_y=bin2deci(v_x)
v_l=length(v_x);
v_y=(v_l-1:-1:0);
v_y=2.^v_y;
v_y=v_x*v_y';
%---

58

BM

%BM

%TITLE : BINARY TO M-ARY CONVERTER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%---
function m=bm(q,v)
%Find the length of input vector,v,and determine if there is a remainder
%after dividing by q
n=length(v);
r=rem(n,q);
%If there is no remainder,don't pad v input vector. Otherwise add the appropriate
%number of zeros to generate a code word with an exact multiple of q bits.
if r==0
v=v;
else
v=[v zeros(1,q-r)];
end
%Place least significant bit of the symbol on the left end.
map=1;
for j=1:q-1
map=[map 2^j];
end
%Remove q bits at a time from v to generate m-ary symbol values.
n=length(v);
p=round(n/q);
A=zeros(q,p);
A(:)=v;
m=map*A;
m_ary_msg=m;
%---

59

CDLDLV

%CDLDLV

%TITLE : BLOCK DEINTERLEAVER

%--
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function s=cdldlv(l,k,dcase,si,SYNC)
si(length(si)+l-length(SYNC):length(si))=zeros(l,length(SYNC));
N=length(si);
if l*k==N
x=zeros(l,k);
x(:)=si;
K=(1:k)-1;
CR=K.*(K+1)/2;
L=(1:l)-1;
RR=L.*(L+1)/2;
if dcase==1
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif dcase==2
for kk=1:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif dcase==3
for kk=1:l
x(kk,:)=rotm(x(kk,:),RR(kk));
end
elseif dcase==4
for kk=1:l
[z,x(kk,:)]=rotm(x(kk,:),RR(kk));
end
elseif dcase==5
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
for ll=1:l
x(ll,:)=rotm(x(ll,:),RR(ll));
end
elseif dcase==6
for kk=1:k

60

[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for ll=1:l
x(ll,:)=rotm(x(ll,:),RR(ll));
end
elseif dcase==7
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
for ll=1:l
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
elseif dcase==8
for kk=1:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for ll=1:l
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
end
x=x';
s=x(:);
s=s';
end
%---

61

CDLILV

%CDLILV

%Title : BLOCK INTERLEAVER

%--
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function si = cdlilv(l,k,dcase,s,SYNC)
N=length(s);
if l*k==N
x=zeros(l,k);
x=x';
x(:)=s;
x=x';
Intermediate_mx=x;
K=(1:k)-1;
CR=K.*(K+1)/2;
L=(1:l)-1;
RR=L.*(L+1)/2;
if dcase==1
for kk=1:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif dcase==2
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif dcase==3
for kk=1:l
[z,x(kk,:)]=rotm(x(kk,:),RR(kk));
end
elseif dcase==4
for kk=1:l
x(kk,:)=rotm(x(kk,:),RR(kk));
end
elseif dcase==5
for ll=1:l
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
for kk=1:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end

62

elseif dcase==6
for ll=1:l
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif dcase==7
for ll=1:l
x(ll,:)=rotm(x(ll,:),RR(ll));
end
for kk=1:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif dcase==8
for ll=1:l
x(ll,:)=rotm(x(ll,:),RR(ll));
end
for kk=1:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
end
si=x(:);
si=si';
end
si(length(si)-length(SYNC)+1:length(si))=SYNC;
%---

63

CDRCDLFT

%CDRCDLFT

%Title : COFDM ENCODER WITH BLOCK INTERLEAVER

%--
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%--
func-
tion[Fa,MD,B_ce,B_random,nsymno,enc_output]=cdrcdlft(picy_n,pic,dcase,s,freqno,rint
lv,cintlv,N,mary,nary,fort,ecc,r_rm,m_rm);
% Determine whether the number of OFDM frequencies are even (# of matrixcol-
umns),indicated
% by the "freqno" parameter. If odd go to error message. Odd frequencies are not allowed
% since the formation of the frequency array is symmetrical and even.
if rem(freqno,2)~=0
disp('ERROR: The number of matrix columns,freqno,representing OFDM frequencies
must be an even number!')
elseif rem(freqno,2)==0
% Determine if the row and column interleave parameters are greater than freqno when
% multiplied together. If not, then display error message and stop.
if (rintlv*cintlv)<(freqno)
disp('')
disp('ERROR: The row and column interleave parameters are not compatible with # of
OFDM frequencies!')
disp('')
else
% Calculate the row symbol number
symno=rintlv*cintlv/freqno;
% Display error message if symno and freqno not compatible with rintlv and cintlv and
stop.
% If not compatible,the interleaver function does not work correctly.
if rem(symno,1)~=0
disp('')
disp('ERROR: The row and column interleave parameters are not compatible with # of
OFDM frequencies!')
disp(' For the entered rintlv, cintlv, and freqno parameters, the calculated symno is:')
disp(symno)
multiesall=mltpl(rintlv,cintlv);
multies=multiesall(1,(2:length(multiesall)-1));
disp(' Possible choices for freqno based upon rintlv and cintlv are:')
disp('')
disp(multies)

64

elseif rem(symno,1)==0
if freqno >= N;
disp('')
disp('ERROR: The number of frequency points, N, needs to be increased !')
disp('N must be larger than:')
disp('')
disp(freqno)
disp('')
elseif freqno < N;
% Generate a random message matrix of m-ary symbols,based upon parameter,mary.
Nmbr_of_symbols =symno*freqno;
[B_ce,B_random,enc_output]=marymsg(mary,symno,freqno,ecc,r_rm,m_rm);
Rndm_m_ary_msg=B_random;
% Perform a block interleaving function on the matrix, B, with rintlv rows
% and cintlv columns.
SYNC=[];
[Br Bc]=size(B_ce);
Bt=B_ce';
Bvect=Bt(:)';
si=cdlilv(rintlv,cintlv,dcase,Bvect,SYNC);
Bi=reshape(si,Bc,Br)';
Intrlvd_array=Bi;
m1=bm(nary,mb(mary,Bi));
lengthm1=length(m1);
nsymno=lengthm1;
remm1=rem(lengthm1,freqno);
if remm1==0;
m1=m1;
else
zero=zeros(freqno-remm1);
m1=[m1 zero(1,:)];
end
length2m1=length(m1);
m=(reshape(m1,freqno,length2m1/freqno))';
N_ary_msg=m;
% Generate a differentially encoded matrix of complex
% values with unit magnitude and one of (2^n) equal phases.
MDD=difcdrft(nary,m,fort);
[MDm MDn]=size(MDD);
MD=MDD;Cmplx_mod_array=MDD;
% Form the frequency array of modulation values that include guard interval.
Fa=cmv2fa(N,MD);
Freq_array=Fa;
end;end
end;end
%--

65

CHANCDL

%CHANCDL

% TITLE : SIMULATIONS FOR AWGN & MULTIPATH FADING CHANNEL

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Dave Roderick, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%---
func-
tion[errmax,errors,freqerrs,papr]=chancdl(chnmdl,wait,prnt,picy_n,pic,dcase,s,freqno,rint
lv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,fort,ecc,r_rm,m_rm)
sigvect=sigs;
klgth=length(k);
chklp=1;
errvect=[];
bervect=[];
freqerrmx=[];
errsperpr=[];
Es_No=[];
Eb_No=[];
sermx=[];
bermx=[];
rowerrmx=[];
symno=rintlv*cintlv/freqno;
for lp=1:length(sigvect);
%
[xmt,modvals,B_ce,B_random,nsymno,enc_output]=cdrcdlft(picy_n,pic,dcase,s,freqno,ri
ntlv,cintlv,N,mary,nary,fort,ecc,r_rm,m_rm);
xmtifft=tda(Ng,xmt);
[ppp]=papr3(xmtifft,N,freqno,pic);
xmtifft=ppp;
size_modvals=size(modvals)

xmtpts=1:length(xmtifft);
 if chnmdl==0
 sandn=xmtifft;
 elseif chnmdl==1
 disp(['Sigma=',num2str(sigvect(lp))]);
 sandn=awgn(xmtifft,N,sigvect(lp));
 elseif chnmdl==2
 sandn=chuhf(s+1,xmtifft,loss,dly,dop,N,freqspace);
 elseif chnmdl==3
 sandmltpth=chuhf(s+1,xmtifft,loss,dly,dop,N,freqspace);

66

 disp(['Sigma=',num2str(sigvect(lp))]);
 sandn=awgn(sandmltpth,N,sigvect(lp));
 elseif chnmdl==4
 sandnmlt=channel1(xmtifft);
 sandn=awgn(sandnmlt,N,sigvect(lp));
 end

sandnfft=itda(Ng,sandn);

K=(length(modvals(1,:)))/2;
[rcvd,rcvd_bit,random_msg,random_bit,M,MM,binary_value]=decdrcdl(picy_n,pic,dcase
,K,sandnfft,nsymno,freqno,rintlv,cintlv,mary,nary,fort,B_random,ecc,r_rm,m_rm);
Transmitted_msg=random_msg;
Received_msg=rcvd;

[er-
rors,bit_error,freqerrs,errmx,rowerrs]=check(pic,random_msg,random_bit,rcvd,rcvd_bit,
n,k(chklp),blklgth,ecc,r_rm,m_rm,enc_output,binary_value);
errvect=[errvect,errors];
bervect=[bervect,bit_error];
freqerrmx=[freqerrmx;freqerrs];
rowerrmx=[rowerrmx;rowerrs];
crntEs_No=1/(2*N*(sigvect(lp)^2));
crntEb_No=crntEs_No;
Es_No=[Es_No,crntEs_No];
Eb_No=[Eb_No,crntEb_No];
Es_Nodb=10*log10(Es_No);
Eb_Nodb=10*log10(Eb_No);
end
ser=errvect/(symno*freqno);
ber=bervect/(2*symno*freqno);
sermx=[sermx;ser];
bermx=[bermx;ber];
errsum=sum(errvect);
errsperpr=[errsperpr,errsum];
errmax=max(rowerrmx');
if picy_n==1
figure(pic+1)
plot(modvals,'*')
hold on;
plot(0,0,'+')
hold off;
title(['Transmitted Signal ',int2str(2^nary), '-ary Constellation Plot'])
xlabel(['Magnitude=1'])
axis('square');
orient tall

67

grid
 if prnt==1;
 print
 pause(10);
 end
pause(wait);
end
%

if picy_n==1
figure(pic+2)
plot([0:N-1],abs(xmt),'*')
title(['Frequency Array Plot (The number of FFT points are ',int2str(N),')'])
xlabel(['Guard interval length is ',int2str(Ng)])
axis('square');
orient tall
grid
 if prnt==1;
 print
 pause(10)
 end
pause(wait);
end
%
if picy_n==1
figure(pic+3)
surf(abs(modvals));
shading interp
grid
orient tall
title(['Magnitude of Transmitted Signal'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel(['Magnitude'])
 if prnt==1;
 print
 pause(10)
 end
 %pause(wait);
end
%
if picy_n==1
figure(pic+6)
plot(M,'*')
hold on;
plot(0,0,'+')

68

hold off;
title(['Received ', int2str(2^nary),'-ary Signal Constellation Plot, BEFORE Differential
Decoding'])
orient tall
axis('square');
grid
 if prnt==1;
 print
 pause(10)
 end
pause(wait);
end
%
if picy_n==1
figure(pic+7)
plot(MM,'+')
hold on;
plot(0,0,'+')
hold off;
title(['Received ',int2str(2^nary),'-ary Signal Constellation Plot, AFTER Differential De-
coding'])
orient tall
axis('square');
grid
 if prnt==1;
 print
 pause(10)
 end
pause(wait);
end
%
%
if picy_n==1
%roty_n=input('Do you want to rotate 3-D plot?(yes=1,no=0):');
roty_n=0;
figure(pic+8)
surf(abs(M));
grid on
shading interp
%grid
orient tall
title(['Magnitude Variation of Received Signal'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel(['Magnitude'])
 if roty_n==1

69

%Rotate the 3-D plot
 for k=1:5
 view(-70+10*k,15+10*k)
 disp('');
 disp('Press "enter" to rotate plot...');
 pause
 end
 %elseif roty_n==0
 end
 if prnt==1;
 print
 pause(10)
 end
 %pause(wait);
end
%
if errsum~=0
%2-D Error Performance Curve showing BER vs. Es/No.

 figure(pic+12)
 semilogy(Eb_Nodb,ber)
 grid
 if fort==1
 if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
 title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])
 elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
 title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])
 elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
 title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])
 else
 title(['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 end
 elseif fort==0
 if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
 title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])
 elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
 title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])
 elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
 title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.Enc.)(Total
errors=',int2str(sum(errvect)),')'])

70

 else
 title(['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 end
 end
 xlabel(['Eb/No(dB)(# of
OFDM=',int2str(freqno),')(dcase=',int2str(dcase),')(Interleaverpair=',int2str(rintlv),',',int2s
tr(cintlv),') M-ary=',int2str(2^mary),',Nary=',int2str(2^nary)]);
 ylabel(['Sigma Range:(',num2str(min(sigs)),'-
',num2str(max(sigs)),')(RS=',int2str(floor((n-
k)/2)),')(Symbol#=',int2str(symno*freqno),')(Seed=',num2str(s),')']);
 orient tall
%2-D Error Performance Curve showing SER vs. Eb/No.
 figure(pic+13)
 semilogy(Es_Nodb,ser)
 grid
 if fort==1
 if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
 title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
 title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
 title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 else
 title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 end
 elseif fort==0
 if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
 title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
 title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
 title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 else
 title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq.
Diff.Enc.)(Total errors=',int2str(sum(errvect)),')'])
 end
 end
 text(min(ceil(Es_Nodb)),.18,['Loss=[',num2str(loss),']']);

71

 text(min(ceil(Es_Nodb)),.12,['Delay=[',num2str(dly),']']);
 text(min(ceil(Es_Nodb)),.08,['Doppler=[',num2str(dop),']']);
 xlabel(['Es/No(dB)(# of OFDM=',int2str(freqno),')(dcase=',int2str(dcase),')(Interleaver
pair=',int2str(rintlv),',',int2str(cintlv),') M-ary=',int2str(2^mary),',Nary=',int2str(2^nary)]);
 ylabel(['Sigma Range:(',num2str(min(sigs)),'-
',num2str(max(sigs)),')(RS=',int2str(floor((n-
k)/2)),')(Symbol#=',int2str(symno*freqno),')(Seed=',num2str(s),')']);
 orient tall
end
if prnt==1
print
pause(10)
end
%--

72

CHANNEL1

%CHANNEL1

% TITLE : SEVERE CHANNEL

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof R. Cristi, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%---
function yr=channel1(xt)
[asd asn]=size(xt);
xt=xt.';
xt=xt(:).';
% yr=channel(xt)
% with xt=transmitted vector
% yr=received vector
% length(yr)=length(xt)
% if the program gives you an error, just increase the size of the
% transmitted vector "xt"
% Created by: Roberto Cristi, November 2003

Fs=1.25*10^6; % sampling frequency (Hz)
Fd=200; % doppler frequency (Hz)

% Parameters for Channel A
 %Td=[0.0, 0.25,0.5,1.0,1.9,2.2]; % time delays (in microsec)
 %PdB=[0.0,-1.0,-9.0,-10.0,-15.0,-20.0]; % Powers (in dB)
 %K=[0,0,0,0,0,0]; % Ricean Factor

% Parameters for Channel B
Td=[0.0, 0.25,9.0,13.0, 17.0, 20.0]; % time delays (in microsec)
PdB=[-2.5,0.0,-12.8,-10, -25.2, -16]; % Powers (in dB)
K=[0.5,0.5,0,0,0,0]; % Ricean Factors

Td=Td*(10^(-6)); % time delays (in sec)
nd=round(Td*Fs); % time delay in samples
P=10.^(PdB/10); % Powers (Linear)
Np=length(xt);

yr=zeros(size(xt));
for k=1:length(Td)
g=jakes(Fd, Fs, Np);
s=sqrt(P(k)/(K(k)+1)); % random path
m=sqrt(P(k)*K(k)/(K(k)+1)); % direct path

73

total=s*g+m*exp(j*2*pi*Fd/Fs*(0:length(xt)-1));
yr=yr+[zeros(1,nd(k)), xt(1:length(xt)-nd(k))].*total;
end
yr=reshape(yr,asn,asd).';
%---

74

CHECK

%CHECK

% TITLE : SOURCE AND SINK MESSAGE CHECKER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%--
func-
tion[error_no,bit_error_total,freqerrs,errmx,rowerrs]=check(pic,x,xbit,y,ybit,n,k,blklgth,e
cc,r_rm,m_rm,enc_output,binary_value)

if ecc~=2;% unless reed muller
if blklgth>n
disp('')
disp('ERROR! The block length, blklgth, must be equal or less than the code word
length,n.')
disp('Please enter a smaller value for blklgth, or change n.')
disp('')
elseif blklgth<=n
 if n<k
 disp('')
 disp('Error! The code word length,n,must be equal or larger than the information
length,k.')
 disp('Please enter a larger value for n, or change k to a smaller number.')
 disp('')
 elseif n>=k
 First_matrix=x;
 Second_matrix=y;
 [rx cx]=size(x);
%Compare inputs x and y and generate error matrix, "errors"
 errors=(x~=y);
 First=xbit;
 Second=ybit;
 [rx1 cx1]=size(xbit);
%Compare inputs xbit and ybit and generate BIT error matrix, "bit_errors"
 bit_errors=(xbit~=ybit);
%Find the error distribution vs. OFDM frequencies
 freqerrs=sum(errors);
%Find the error location in "errors" where element in x and y differ.
 Error_locations=(find(errors))';
 Error_number=sum(sum(errors));
 Correct_symbl_num=(size(y,1)*size(y,2))-Error_number;

75

%Find the bit error location in "errors" where element in x1 and y1 differ.
%bit_Error_locations=(find(bit_errors))';
 bit_error_total=sum(sum(bit_errors));
 symcorr=floor((n-k)/2);
 if blklgth<=(n-k)
 disp('Error!!!The block length is too short for the given n and k values')
 disp('')
 elseif blklgth>(n-k)
 errtrans=errors';
%Reshape the error matrix as a vector of errors
 errvect=errtrans(:)';
 blkrem=rem(length(errvect),blklgth);
 if blkrem~=0;
 zeropad=zeros(blklgth-blkrem);
 errvectpad=[errvect zeropad(1,:)];
 elseif blkrem==0;
 errvectpad=errvect;
 end
 blknos=length(errvectpad)/blklgth;
 errcorct=[];
 errblksum=[];
 for lp=1:blknos;
 errblk=errvectpad(((blklgth*(lp-1))+1):(blklgth*lp));
 errblklgth=length(errblk);
 if sum(errblk)<=symcorr;
 noerr=zeros(errblklgth);
 errblk=noerr(1,:);
 elseif sum(errblk)>symcorr;
 errblk=errblk;
 end
 errcorct=[errcorct errblk];
 errblksum=[errblksum sum(errblk)];
 end
 newerrvect=errcorct(1:length(errvect));
 errtot=sum(newerrvect);
 RSerrs=(reshape(newerrvect,size(errors,2),size(errors,1)))';
%Find the error distribution vs. OFDM Frequencies
 freqerrs=sum(RSerrs);
 errindex=(find(RSerrs))';
 RSerrtot=sum(errblksum);
 RSerrdif=Error_number-RSerrtot;
 errperblk=[(1:blknos);errblksum];
%Check to see if x and y are the same. If not, display error message
 if x==y;
 disp('GREAT!!!there are no errors.')
 error_no=0;

76

 errmx=errors;
 rowerrs=sum(errors');
 else
 disp('WARNING!:Errors were detected!')
 disp('')
 if n==k
 disp('WARNING!: Since n=k,Conv. coding has no error correcting possible')
 disp('')
 end
 disp(['For the given input parameters:n=',int2str(n),'and k=',int2str(k),',the convolu-
tional code is capable'])
 disp(['of correcting ',int2str(symcorr),'errors.'])
 disp('')
%Check to see if xbit and ybit are the same. If not, display error message
 if xbit==ybit;
 disp('GREAT!!!there are no bit errors.')
 bit_error_no=0;
 bit_errmx=bit_errors;
 bit_rowerrs=sum(bit_errors');
 else
 %disp('WARNING!:Errors were detected!')
 disp('')
 if n==k
 disp('WARNING!: Since n=k,Conv. coding has no error correcting possible')
 disp('')
 end
 end
%CONV code was able to correct all errors
 if errtot==0
 Pre_RS_error_matrix=errors;
 disp('EXCELLENT: Convolutional code corrected all detected errors!')
 disp(['Originally the error total was:',int2str(Error_number)])
 disp('')
 error_no=0;
 [rx cx]=size(x);
 errmx=zeros(rx,cx);
 rowerrs=sum(errmx');
%CONV code was able to correct some errors but not all of them
 elseif errtot<Error_number
 Pre_RS_error_matrix=errors;
 Post_RS_error_matrix=RSerrs;
 errmx=RSerrs;
 rowerrs=sum(errmx');
 disp('OOOPS: Convolutional code corrected some detected errors, but not all.')
 disp(['Originally the error total was : ',int2str(Error_number)])
 disp('')

77

 disp(['After Convolutioanl decoding , the error number was reduced
to:',int2str(RSerrtot)])
 disp('')
 error_no=RSerrtot;
 disp(['The total number of correct symbols are:',int2str((size(y,1)*size(y,2))-RSerrtot)])
 disp('')
 %disp('The error number distribution per block number is :')
 %disp(errperblk)
%figure(pic+3)
%bar((1:blknos),errblksum)
%axis([0.5(blknos+0.5)0(max(errblksum)+1)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block (Error
count=',int2str(error_no),')'])
%xlabel(['Message Block Number(block size:',int2str(blklgth),'symbols)'])
%conv code did not correct any errors
 elseif errtot==Error_number
 Error_matrix=errors;
 errmx=errors;
 rowerrs=sum(errors');
 disp('OOOPS!:The convolutional code did not correct any errors.')
 disp('Perhaps a more powerful code is required.')
 disp('')
 disp(['The total number of error occurrences is:',int2str(Error_number)])
 disp('')
 error_no=errtot;
 %disp('The error number distribution per block number is :')
 %disp(errperblk)
%figure(pic+4)
%bar((1:blknos),errblksum)
%axis([0.5 (blknos+.5) 0 (max(errblksum)+1)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block. (Error
count=',int2str(error_no),')'])
%xlabel(['Message Block Number (block size:',int2str(blklgth)',symbols)'])
%
 end
end
end
end
end
disp('___');
elseif ecc==2;
 k=1;
 for i=1:r_rm;
 k=k+prod(1:m_rm)/prod(1:m_rm-i)/prod(1:i);
 end

78

 disp(['The rate of this code is ',int2str(k),' / ',int2str(2^m_rm),' =
',num2str(k/(2^m_rm))])
y=y(1,[1:size(x,2)]);
ybit=ybit(1,[1:size(xbit,2)]);
%Compare inputs x and y and generate error matrix, "errors"
 errors=(x~=y);
%Compare inputs xbit and ybit and generate BIT error matrix, "bit_errors"
 bit_errors=(xbit~=ybit);
%Find the error distribution vs. OFDM frequencies
 freqerrs=sum(errors);
 Error_number=sum(sum(errors));
 bit_error_total=sum(sum(bit_errors));
 e=2^(m_rm-r_rm-1)-1;
 %Reed-Muller symbol correction for k symbols
 if m_rm-r_rm<=1
 disp('WARNING! This code does NOT have error correction capability!!!')
 elseif m_rm-r_rm>1
 disp(['This code can correct up to ',int2str(e),' error(s) in a blocklength of
',int2str(2^m_rm),' bits'])
 end
 errtrans=errors';
%Reshape the error matrix as a vector of errors
 errvect=errtrans(:)';
 blkrem=rem(length(errvect),k);
 if blkrem~=0;
 zeropad=zeros(k-blkrem);
 errvectpad=[errvect zeropad(1,:)];
 elseif blkrem==0;
 errvectpad=errvect;
 end
 blknos=length(errvectpad)/k;
 errcorct=[];
 errblksum=[];
 for lp=1:blknos;
 errblk=errvectpad(((k*(lp-1))+1):(k*lp));
 errblklgth=length(errblk);
 if sum(errblk)<=e;
 noerr=zeros(errblklgth);
 errblk=noerr(1,:);
 elseif sum(errblk)>e;
 errblk=errblk;
 end
 errcorct=[errcorct errblk];
 errblksum=[errblksum sum(errblk)];
 end
 newerrvect=errcorct(1:length(errvect));

79

 errtot=sum(newerrvect);
 RMerrs=(reshape(newerrvect,size(errors,2),size(errors,1)))';
%Find the error distribution vs. OFDM Frequencies
 freqerrs=sum(RMerrs);
 errindex=(find(RMerrs))';
 RMerrtot=sum(errblksum);
 RMerrdif=Error_number-RMerrtot;
 errperblk=[(1:blknos);errblksum];
%Check to see if x and y are the same. If not, display error message
 if x==y;
 disp('GREAT!!!there are no errors.')
 error_no=0;
 errmx=errors;
 rowerrs=sum(errors');
 else
 disp('WARNING!:Errors were detected!')
 disp('')
%Check to see if xbit and ybit are the same. If not, display error message
 if xbit==ybit;
 disp('GREAT!!!there are no bit errors.')
 bit_error_no=0;
 bit_errmx=bit_errors;
 bit_rowerrs=sum(bit_errors');
 else
 %disp('WARNING!:Errors were detected!')
 disp('')
 %RM code was able to correct all errors
 %if Error_number==0
 if errtot==0
 disp('EXCELLENT: The Reed-Muller code corrected all detected errors!')
 disp(['Originally the error total was:',int2str(Error_number)])
 disp('')
 error_no=0;
 [rx cx]=size(x);
 errmx=zeros(rx,cx);
 rowerrs=sum(errmx');
 %RM code was able to correct some errors but not all of them
 elseif errtot<Error_number
 Pre_RM_error_matrix=errors;
 Post_RM_error_matrix=RMerrs;
 errmx=RMerrs;
 rowerrs=sum(errmx');
 disp('The Reed-Muller code corrected some detected errors, but not all.')
 disp(['Originally the error total was : ',int2str(Error_number)])
 disp('')
 disp(['After R-M decoding , the error number was reduced to:',int2str(RMerrtot)])

80

 disp('')
 error_no=RMerrtot;
 disp(['The total number of correct symbols are:',int2str((size(y,1)*size(y,2))-
RMerrtot)])
 disp('')
 %disp('The error number distribution per block number is :')
 %disp(errperblk); %degisme degisme ; koyulacak
%figure(pic+3)
%bar((1:blknos),errblksum)
%axis([0.5(blknos+0.5)0(max(errblksum)+1)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block (Error
count=',int2str(error_no),')'])
%xlabel(['Message Block Number(block size:',int2str(blklgth),'symbols)'])
%RM code did not correct any errors
 elseif errtot==Error_number
 Error_matrix=errors;
 errmx=errors;
 rowerrs=sum(errors');
 disp('The Reed-Muller code did not correct any errors.')
 disp('Perhaps a more powerful R-M code is required.')
 disp('')
 disp(['The total number of error occurrences is:',int2str(Error_number)])
 disp('')
 error_no=errtot;
 %disp('The error number distribution per block number is :')
 %disp(errperblk)
%figure(pic+4)
%bar((1:blknos),errblksum)
%axis([0.5 (blknos+.5) 0 (max(errblksum)+1)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block. (Error
count=',int2str(error_no),')'])
%xlabel(['Message Block Number (block size:',int2str(blklgth)',symbols)'])
disp('___');
 end
end
end
end
%---

81

CHUHF

%CHUHF

% TITLE : UHF CHANNEL MODEL (MULTIPATH CHANNEL)

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function y=chuhf(s,x,loss,dly,dop,N,freqspace)
c=10.^(-loss./20);
deltat=1/(N*freqspace);
d=(dly.*.000001)./deltat;
e=dop./freqspace;
[L,Nt]=size(x);
D=length(d);
x=x.';
x=x(:).';
%D path with delays from d. (Uses macro dline.m)
xd=dline(x,d);
[rr,cc]=size(xd);
x=xd(1,:);
% Offsets direct path by .7 of max doppler freq. (uses macro ofst.m)
xo=ofst(.7*e(1),N,x);
% First path with no fading. (uses macro ray_dop.m)
for l=1:D
a=ray_dop(s,cc,N,e(1));
xd(1,:)=a.*xd(1,:);
end
%Sums the fading paths
y=c*xd;
%Adds in the First path without fading for the GSM-Ricean.
%
y=y+xo;
y=y(1:L*Nt);
y=reshape(y,Nt,L).';
%---

82

CMV2FA

%CMV2FA

% TITLE : COMPLEX FREQUENCY ARRAY GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Dave Roderick, Naval Postgraduate School
% Modified By : Tan Kok Chye, Naval Postgraduate School
%--
function X=cmv2fa(N,M)
[m n]=size(M);
if rem(n,2)==0;
M=M;
else
M=[zeros(m,1) M];
end
[m n]=size(M);
K=round(n/2);
%Generate a matrix of zeros with m row and N columns.
X=zeros(m,N);
X(:,1:K)=M(:,K+1:2*K);
X(:,N-K+1:N)=M(:,1:K);
%---

83

CNV_ENCD

%CNV_ENCD

% TITLE : CONVOLUTIONAL ENCODING

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function ce_output=cnv_encd(ce_g,ce_k0,ce_input)
% cnv_encd(ce_g,ce_k0,ce_input)
% determines the output sequence of a binary convolutional encoder
% ce_g is the generator matrix of the convolutional code
% with ce_n0 rows and ce_l*ce_k0 columns. Its rows are ce_g1,ce_g2,....ce_gn.
% ce_k0 is the number of bits entering the encoder at each clock cycle.
% check to see if extra zero padding is necessary
if rem(length(ce_input),ce_k0)>0
ce_input=[ce_input,zeros(size(1:ce_k0-rem(length(ce_input),ce_k0)))];
end
ce_n=length(ce_input)/ce_k0;
%check the size of matrix ce_g
if rem(size(ce_g,2),ce_k0)>0
error('Error, ce_g is not of the right size.')
end
% determine ce_l and ce_n0
ce_l=size(ce_g,2)/ce_k0;
%disp(['The value of ce_l is:',int2str(ce_l)]);
ce_n0=size(ce_g,1);
%disp(' ')
%disp(['The value of ce_n0 is:',int2str(ce_n0)]);
%add extra zeros
ce_u=[zeros(size(1:(ce_l-1)*ce_k0)),ce_input,zeros(size(1:(ce_l-1)*ce_k0))];
%generate ce_uu, a matrix whose column are the contents of
%conv. encoder at various cycles.
ce_u1=ce_u(ce_l*ce_k0:-1:1);
for ce_i=1:ce_n+ce_l-2
ce_u1=[ce_u1,ce_u((ce_i+ce_l)*ce_k0:-1:ce_i*ce_k0+1)];
end
ce_uu=reshape(ce_u1,ce_l*ce_k0,ce_n+ce_l-1);
%determine the ce_output
ce_output=reshape(rem(ce_g*ce_uu,2),1,ce_n0*(ce_l+ce_n-1));
%---

84

COFDMSIM

%COFDMSIM

% TITLE : SIMULATION OF COFDM

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Dave Roderick, Naval Postgraduate School
% Modified By : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%--
clc,close all;clear all;
disp('__');
disp('This batch m-file runs COFDM simulations using different channel models.')
fort=input('To run the frequency version, enter 1(one), To run the time version, enter
0(zero), or to run both enter 2(two):');
freqno=input('Enter the # of OFDM frequencies (note : must be even):');
%N=input('Enter the number of FFT points (Note : This number must be larger than # of
OFDM frequencies):');
N=64;
chnmdl=input('Do you want to run channel model 0, 1, 2, 3 or 4? (Enter 0,1,2,3 or 4):');
if chnmdl==0
disp('Code check simulation performed.');
sigs=0;
loss=0;
dop=0;
dly=0;
elseif chnmdl==1
disp('AWGN Channel simulation performed.');
sigs=input('Enter the sigma noise parameter range or single value. (Ex lin-
space(0,0.02,20)or .003):');
loss=0;
dop=0;
dly=0;
elseif chnmdl==2
disp('Multipath Channel simulation performed.');
sigs=0;
pthno=input('Do you want to run link1 ,link2, link3 or a custom link ? (Enter 1,2,3 or 4
for custom):');
%
%Link parameters
%
 if pthno==3
 %my link 3

85

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==2
 %my link 2

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==1
 %my link 1

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==4
 disp('Custom link simulation...')
 loss=input('Enter the path loss in db (Ex
[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,32.57
,34.74,36.92]):');
 dop=input('Enter the doppler frequency in Hertz (Ex
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]):');
 dly=input('Enter the time delays of the multipaths in microsecs (Ex
[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85]):'
);
 end
elseif chnmdl==3
disp('AWGN+Multipath Channel simulation performed');
sigs=input('Enter the sigma noise parameter range or single value. (Ex lin-
space(0,0.02,20) or .003):');
pthno=input('Do you want to run link1, link2, link3 or a custom link ?(Enter 1,2,3 or 4
for custom):');
%
%Link parameters
%
 if pthno==3

86

 %my link 3

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==2
 %my link 2

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==1
 %my link 1

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];
 dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];
 elseif pthno==4
 disp('Custom link simulation...')
 loss=input('Enter the path loss in db (Ex
[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,32.57
,34.74,36.92]):');
 dop=input('Enter the doppler frequency in Hertz (Ex
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]):');
 dly=input('Enter the time delays of the multipaths in microsecs (Ex
[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85]):'
);
 end
elseif chnmdl==4;
 sigs=input('Enter the sigma noise parameter range or single value. (Ex lin-
space(0,0.02,20)or .003):');
 disp('Mobile channel simulation')
 %sigs=0;
 loss=0;
 dop=0;
 dly=0;

87

end
%%%%allcase=input('Simulate all interleaver cases (yes) or specific ones(no)?
(1=yes,0=no):');
allcase=0;
if allcase==1
disp('All cases,(0-8),will be tested.');
cases=[0:8];
elseif allcase==0
%%%%cases=input('Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):');
cases=0;
end
if fort~=2
 if length(cases)~=1
 casey_n=input('Do you want to find optimal interleaver case(s) ? (1=yes, 0=no):');
 else
 casey_n=0;
 end
end
totsym=input('Enter the total minimum number of symbols to simulate (Ex 10000):');
rowno=ceil(totsym/freqno);
if totsym~=(rowno*freqno)
disp(['Note:Based on the parameters thus far, the actual total number of symbol to be
simulated will be :',int2str(rowno*freqno)]);
end
%pry_n=input('For the interleaver, do you want to calculate all possible intermediate ma-
trix dimension pairs?(1=yes,0=no):');
pry_n=1;
pair1=1;
pair2=rowno*freqno;
if pry_n==1
Intrlvr_pairs=intlvprs(rowno,freqno);
intlvrprs=Intrlvr_pairs;
%ee=round(size(intlvrprs,1)/3);
%int(:,1)=intlvrprs([1:ee],1);
%int(:,2)=intlvrprs([1:ee],2);
%int(:,3)=intlvrprs([ee+1:2*ee],1);
%int(:,4)=intlvrprs([ee+1:2*ee],2);
%int(:,5)=intlvrprs([2*ee+1:end],1);
%int(:,6)=intlvrprs([2*ee+1:end],2);
disp('')
disp('For these input parameters, all possible acceptable interleaver dimension pairs are: ')
disp(Intrlvr_pairs)
%disp(int)
end
pairs=input(['Desired interleaver pair? (Ex [row # col #] = [20 50]):']);
rintlv=pairs(1);

88

cintlv=pairs(2);
%mary=input('Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):');
mary=1;
%nary=input('Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):');
nary=2;
freqspace=round(16600000/freqno);
%Ng=input('Enter the guard interval length (Number of sample points):');
Ng=16;
ecc=input('Enter the type of error correction coding ? (0=No FEC code, 1=Convolutional
Code, 2=Reed-Muller Code):');
if ecc==1
code=input('Enter n, k and error correction block length (Ex: [240 200 240]):');
n=code(1);
k=code(2);
blklgth=code(3);
r_rm=0;m_rm=0;
elseif ecc==2;
pair_rm=input('Enter the r,m pair for the Reed-Muller code (Ex: [2 4]):');
r_rm=pair_rm(1,1);m_rm=pair_rm(1,2);
if r_rm>m_rm
display('ERROR!!! m must be equal to or larger than r, and both must be integer larger
than zero!')
pair_rm=input('Enter the r,m pair for the Reed-Muller code (Ex: [2 4]):');
r_rm=pair_rm(1,1);m_rm=pair_rm(1,2);
end
n=0;k=0;blklgth=0;
elseif ecc==0
n=freqno;
k=freqno;
blklgth=freqno;
r_rm=0;m_rm=0;
end

%svals=input('Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or
[0]):');
svals=33;
%picy_n=input('Do you want signal plots? (1=yes, 0=no):');
picy_n=1;
if picy_n==1
%wait=input('How many seconds of delay between pictures?');
wait=3;
wait=round(wait);
elseif picy_n==0
wait=0;
end
%prnty_n=input('Do you want print outs? (1=yes, 0=no):');

89

prnty_n=0;
pic=0;
svect=[];
for run=1:length(svals);
 errvect=[];
 errcase=[];
 errtot=[];
 if min(svals)==0
 rand('seed',sum(100*clock));
 s=round(abs(rand(1)*pi*10*(pic+1)*run));
 elseif min(svals)~=0
 s=svals(run);
 end
 svect=[svect,s];
 for l=1:length(cases);
 disp('__')
 disp(['Run#:',int2str(run)]);
 if chnmdl==0
 disp(['Channel Model 0 : Code Check Simulation Performed'])
 elseif chnmdl==1
 disp(['Channel Model 1 : AWGN Channel with Performed'])
 elseif chnmdl==2
 disp(['Channel Model 2 Link ',int2str(pthno),' : Multipath Channel Performed'])
 elseif chnmdl==3
 disp(['Channel Model 3 Link ',int2str(pthno),' : AWGN + Multipath Channel Per-
formed'])
 elseif chnmdl==4
 disp(['Channel Model 4 : Severe Mobile Outdoor Channel Performed']);
 end
 %disp(['Seed=',int2str(s)]);
 disp(['Interleaver case=',int2str(cases(l))]);
 disp(['Interleaver Pair=[',int2str(pairs),']']);
 disp(['The # of OFDM subcarriers=',int2str(freqno)]);
 if ecc==0;
 disp(['FEC code is not used for this run']);
 elseif ecc==1
 disp(['n=',int2str(n),' k=',int2str(k),' convolutional code is used for this run']);
 elseif ecc==2
 disp(['R(',int2str(r_rm),',',int2str(m_rm),') Reed-Muller code is used for this run']);
end
 if fort<=1
[errmax,errors,freqerrs,papr]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,ri
ntlv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,fort,ecc,r_rm,m_rm);
 elseif fort==2
 disp('Frequency differential encoding/decoding simulation...')
 disp('__')

90

[errmax,errors,freqerrs,papr]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,ri
ntlv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,1,ecc,r_rm,m_rm);
 disp('**')
 disp('Time differential encoding/decoding simulation....')

disp('__')
[errmax,errors,freqerrs,papr]=chancdl(chnmdl,wait,prnty_n,picy_n,pic+12,cases(l),s,freq
no,rintlv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,0,ecc,r_rm,m_rm)
;
 end
 errtot=[errtot sum(errors)];
 errvect=[errvect errtot];
 errcase=[errcase sum(errmax)];
 end
 if fort~=2
 casearry=[cases;errcase];
 if casey_n==1
 figure(pic+14)
 bar(cases,errcase)
 grid
 orient tall
 if fort==1
 title([int2str(pic),':Maximum Error Total Vs. Interleaver CASE Number
(Freq.Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')'])
 elseif fort==0
 title([int2str(pic),':Maximum Error Total Vs. Interleaver CASE Number (Time
Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')'])
 end
 xlabel(['CDL Interleaver CASE Number'])
 ylabel(['Maximum Error Count For Any Symbol Row (Seed=',int2str(s),')'])
 axis([-.5 8.5 0 (max(errcase)+1)])
 if prnty_n==1;
 print
 pause(10)
 end
 pause(wait);
 figure(pic+15)
 bar(cases,errtot)
 grid
 orient tall
 title([int2str(pic),':Error Totals Vs. Interleaver CASE Number'])
 xlabel(['CDL Interleaver CASE Number'])
 ylabel(['Sigma:(',num2str(min(sigs)),'-',num2str(max(sigs)),') Error Total'])
 axis([-.5 8.5 (min(errtot)-1) (max(errtot)+1)])
 if prnty_n==1;
 print

91

 pause(10)
 end
 pause(wait);
 end
 pic=pic+1;
 end
end
disp('**')
disp('')
disp('Channel model batch run is finished!')
%Seed=svect
%---

92

CVDD

%CVDD

% TITLE : CONTINUOUS VARIABLE DIGITAL DELAY ELEMENT

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function [y]=cvdd(x,alpha)
if ((nargin~=2)|(nargout~=1))
error('ERROR:usage:y=y=cvdd(x,alpha);');
return;
end
if (size(x)~=size(alpha))
error('ERROR:x and alpha must be the same size');
return;
end
if (abs(alpha)>0.5)
error('ERROR:alpha must be within -0.5 and 0.5');
return;
end
%--
% Initialization
%--
% Initialize FIR filter coefficients are in [1] (0,0.328 pass band)
C0=[-0.013824 0.054062 -0.157959 0.616394 0.616394 -0.157959 0.054062 -0.013824];
C1=[0.003143 -0.019287 0.1008 -1.226364 1.226364 -0.1008 0.019287 -0.003143];
C2=[0.055298 -0.216248 0.631836 -0.465576 -0.465576 0.631836 -0.216248 0.055298];
C3=[-0.012573 0.077148 -0.403198 0.905457 -0.905457 0.403198 -0.077148 0.012573];
%---
% 4 parallel FIR and add together based on [1]
%---
y0=filter(C0,[1],x);
y1=filter(C1,[1],x);
y2=filter(C2,[1],x);
y3=filter(C3,[1],x);
%
y=alpha.*y3;
y=alpha.*(y+y2);
y=alpha.*(y+y1);
y=y+y0;
%---

93

DECDRCDL

%DECDRCDL

% Title : COFDM DECODER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Dave Roderick, Naval Postgraduate School
% Modified By : TEZEREN,Serdar Umit,LTJG,TURKISH NAVY
%--
func-
tion[outmsg,decoder_output_bit,random_msg,random_bit,M,MM,binary_value]=decdrcd
l(picy_n,pic,dcase,K,Fa,nsymno,freqno,rdintlv,cdintlv,mary,nary,fort,B_random,ecc,r_rm
,m_rm)
%to generate BER vs Eb/No.
%to provide bit outputs
M=fa2cma(K,Fa);
Cmplx_mod_vals=M;
%
naryp=nary;
[s,MM]=dfdcdrft(naryp,nary,M,fort);
[L,cc]=size(s);
strans=s';
svect=strans(:).';
corrs=svect(1:nsymno);
%
nsymno;
Br=bm(mary,mb(nary,corrs));
lengthBr=length(Br);
rmndr=rem(length(Br),freqno);
if rmndr==0;
Br=Br;
elseif rmndr~=0;
Br=Br(1:(lengthBr-rmndr));
end
rcvd=(reshape(Br,freqno,length(Br)/freqno))';
Rcvd_Intlv_Ary=rcvd;
%
[Br Bc]=size(rcvd);
SYNC=[];
sr=rcvd';
si=sr(:)';
sd=cdldlv(rdintlv,cdintlv,dcase,si,SYNC);
binary_value=mb(mary,sd);
if ecc~=2;

94

viter_G=[1 0 1 1 0 1 1;1 1 1 1 0 0 1];
viter_k=1;
[viterbi_output,survivor_sta,cumul_metrix]=viterbi(viter_G,viter_k,binary_value);
decoder_output=viterbi_output;
%mary_dec=bm(mary,decoder_output);
%decoder_output_bit=decoder_output;
%outmsg=reshape(sd,Bc,Br)';
%
%random_bit=B_random;
%random_msg=bm(mary,random_bit);
%[Brow Bcol]=size(random_msg);
%
%outmsg=reshape(mary_dec,Bcol,Brow)';bu zaten yuzdeliydi kaldirma
%Sink_Msg=outmsg;
elseif ecc==2;
[rmdecoder_output]=rmdecoder(binary_value,r_rm,m_rm);
decoder_output=rmdecoder_output;
end
mary_dec=bm(mary,decoder_output);
decoder_output_bit=decoder_output;
%outmsg=reshape(sd,Bc,Br)'; bu zaten yuzdeliydi kaldirma
%
random_bit=B_random;
random_msg=bm(mary,random_bit);
[Brow Bcol]=size(random_msg);
%
outmsg=reshape(mary_dec,size(mary_dec,1)*size(mary_dec,2),1)';
Sink_Msg=outmsg;
%---

95

DECI2BIN

%DECI2BIN

% TITLE : DECIMAL TO BINARY CONVERSION

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function y=deci2bin(x,l)
y=zeros(1,l);
vi=1;
while x>=0 & vi<=l
y(vi)=rem(x,2);
x=(x-y(vi))/2;
vi=vi+1;
end
y=y(l:-1:1);
%---

96

DFDCDRFT

%DFDCDRFT

% TITLE : COMPLEX NUMBER DEMODULATOR & FREQUENCY / TIME
DIFFERENTIAL DECODING

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function [s,M]=dfdcdrft(qp,q,MD,fort)
if fort==0 %Time Differential decoding
MD=MD';
[m n]=size(MD);
% Perform a looping routine to find the phase differences between adjacent values in the
% array,MD,and put these calculated values into array,M.
for l=1:m
for j=1:n-1
M(l,j)=MD(l,j+1)*conj(MD(l,j));
end
end
%Transpose the array back to its original form
M=M';
% Calculate the number of M-ary symbols based upon the exponent qp,then use this
number
% to find the number of equally spaced phases in a unit circle.
N=2^qp;
dph=2*pi/N;
% Divide the phase arguments of elements in M, by the equal phases generated by dph.
phn=angle(M)./dph;
% Calculate the phase sector number by finding the remainders.
s=rem(round(phn)+N,N);
elseif fort==1 % Frequency Differential decoding
% Transpose the modulation array, and find the dimensions
[m,n]=size(MD);
MD=MD(:,2:n);
[m n]=size(MD);
% Perform a looping routine to find the phase differences between
% adjacent values in the array, MD, and put these calculated values into array,M.
for l=1:m
for j=1:n-1
M(l,j)=MD(l,j+1)*conj(MD(l,j));
end
end

97

N=2^qp;
dph=2*pi/N;

% Calculate the phase sector number by finding the remainders.
phn=angle(M)./dph;
s=rem(round(phn)+N,N);
end
%---

98

DIFCDRFT

%DIFCDRFT

% TITLE : COMPLEX NUMBER MODULATOR & FREQUENCY / TIME
DIFFERENTIAL ENCODING

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--

function MD=difcdrft(q,m,fort)
if fort==0 %Time differential encoding
% M-ary alphabet size
N=2^q;
% Determine the number of equal phases based upon the m-ary symbol length
dph=2*pi/N;
% Find the size of the input symbol matrix (# of row & # of columns)
[rr n]=size(m);
% Perform the time differential encoding of phase values by cumulative summing matrix,
% m, down one column at a time across the entire matrix. This function generates a ma-
trix.
for k=1:n
md=cumsum(m(:,k));
% Generate the complex numbers with correspondiing phase values.
MD(:,k)=exp(i*dph.*md);
end
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization
MD=[ones(1,n); MD];
elseif fort==1 % Frequency Differential encoding
% M-ary alphabet size
N=2^q;dph=2*pi/N;
% Find the size of the input symbol matrix (# of row & # of columns)
[rr n]=size(m);
md=cumsum(m');
md=md';
% Generate the complex numbers with corresponding phase values.
MD=exp(i*dph.*md);
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization.
MD=[ones(rr,2) MD];
end
%---

99

DLINE

%DLINE

% TITLE : UHF CHANNEL DELAY LINE GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function xd=dline(x,d)
x=x.';
dmax=max(d);
dmin=min(d);
nmin=floor(dmin);
nmax=ceil(dmax);
x=[x;zeros(nmax+3,1)];
N=length(x);
Nd=length(d);
%
for n=1:Nd;
di=d(n);
D=floor(di);
deld=di-D;
xd(:,n)=cvdd(x,deld-.5);
xd(:,n)=[zeros(D,1);xd(1:N-D,n)];
end
xd=xd.';
[rr,cc]=size(xd);
xd=xd(:,4+nmin:cc);
%---

100

DOT_PRO

%DOT_PRO

% TITLE : DOT PRODUCT OPERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function z=dot_pro(X,S)
a=size(X);
z=0;
for i=1:a(1,2);
 z=xor(z,(X(i)*S(i)));
end
%---

101

FA2CMA

%FA2CMA

% TITLE : FREQUENCY ARRAY TO COMPLEX MODULATION ARRAY
CONVERTER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function Mm=fa2cma(K,X)
[m n]=size(X);
Mm(:,1:K)=X(:,n-K+1:n);
Mm(:,K+1:2*K)=X(:,1:K);
Cmplx_mod_vals=Mm;
%---

102

GM_PART1

%GM_PART1

% TITLE : RM ENCODING MATRIX FIRST PART GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [bb]=gm_part1(m);
AA=zeros(2^m,m);
B=eye(m);
for i=2:2^m;
 AA(i,:)=xor(AA(i-1,:),B(m,:));
 for j=1:m;
 if rem(i-1,2^j)==0;
 AA(i,:)=xor(AA(i,:),B(m-j,:));
 end
 end
end
AA=AA';
for i=1:size(AA,1);
 for j=1:size(AA,2);
 if AA(i,j)==0;
 AA(i,j)=1;
 elseif AA(i,j)==1;
 AA(i,j)=0;
 end
 end
end
bb=zeros(size(AA,1)+1,size(AA,2));
bb(1,:)=ones(1,size(AA,2));
bb([2:end],:)=AA;
%---

103

INTLVPRS

%INTLVPRS

%TITLE : INTERMEDIATE MATRIX INTERLEAVER DIMENSION PAIRS

%---
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%--
function pairs=intlvprs(n,m)
prod=n*m;
multvect=[1];
for i=2:prod;
remdr=rem(prod,i);
if remdr==0
multvect=[multvect i];
else
multvect=multvect;
end
mult=multvect;
end
lngth=length(mult);
nbr=mult(lngth);
result=[1 nbr];
for i=2:lngth;
crntpr=[mult(i) nbr/mult(i)];
result=[result;crntpr];
end
pairs=result;
%---

104

INVERSE

%TITLE : INVERSE OF THE BINARY ARRAY

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function d=inverse(D)
e=size(D);
f=e(1,2);
d=xor(ones(1,f),D);
%---

105

ITDA

%ITDA

%TITLE : IFFT AND GI REMOVAL OPERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function Y=itda(Ng,y)
[L Nt]=size(y);
% Remove the guard interval for channel compensation, Ng, precursor.
y=y(:,Ng+1:Nt);
% Take the FFT of array,y
Y=fft(y.').';
%---

106

%JAKES

% TITLE : RANDOM VECTOR GENERATOR WITH JAKES SPECTRUM

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof R. Cristi, Naval Postgraduate School
%--
function g=jakes(Fd,Fs,N);
% g=jakes(Fd,Fs,N)
% generate a random vector of length N with jakes spectrum
% Fd=doppler frequency
% Fs=sampling frequency (Fs>10*Fd required)
% N=vector length
% g=generated random vector
% The vector g has unit power, ie g'*g*Fs/N=1
L=round(log2(Fs/(10*Fd)));
F0=Fs/(2^L); % sampling frequency for generating the random sequence
N0=2*ceil(N/(2^L));
Nf=512; % number of frequency components...
 % ... in spectrum definition
Nh=256; % length of FIR filter
% FIR Filter impulse response
w=0.54-0.46*cos(2*pi*(0:Nh-1)/Nh); % hamming window
fd=Fd/F0; % digital doppler frequency
f=0:(1/Nf):1-(1/Nf); % vector of digital frequencies (1/2=Nyquist Freq)
kd=floor(fd*Nf); % index for doppler frequency fd
H0(1:kd)=sqrt(1-(f(1:kd)/fd).^2);
I=find(H0==0); H0(I)=0.0001*ones(size(I));
H=zeros(1,Nf);
H(1:length(H0))=(1./H0);
H=H.*exp(-j*2*pi*f*Nh/2);
h0=real(ifft(H));
h=h0(1:length(w)).*w;
% Generate time varying taps at low sampling freq Fs_ch
seed=14;
randn('state',seed);
a=randn(1,N0+Nh);
seed=seed+6;
b=randn(1,N0+Nh);
%x=randn(1,N0+Nh)+j*randn(1,N0+Nh);
x=a+j*b;

g=filter(h,1,x);

107

g=g(Nh+1:Nh+N0); % steady state response
% Upsample to Fs=(2^L)*F0 in L stages
for m=1:L
F0=2*F0;
g=reshape([g;zeros(size(g))], 1,2*length(g));
omegad=2*pi*Fd/F0;
Domega=(pi/2)-omegad;
omegac=((pi/2)+omegad)/2;
M=ceil(((8*pi/Domega)-1)/2);
Nfilt=2*M+1; % filter order using hamming window
nt=0:Nfilt-1;
w=0.54-0.46*cos(2*pi*nt/Nfilt); % hamming window
hm(1:M)=sin(omegac*(nt(1:M)-M))./(pi*(nt(1:M)-M));
hm(M+1)=omegac/pi;
hm(M+2:Nfilt)=sin(omegac*(nt(M+2:Nfilt)-M))./(pi*(nt(M+2:Nfilt)-M));
hm=hm(1:Nfilt).*w;
g=filter(hm,1,g);
g=g(Nfilt:length(g)); % steady state
end
% Normalize
g=g(1:N);
K=g*g'/N;
g=g/sqrt(K);
%---

108

MARYMSG

%MARYMSG

% TITLE : M-ARY RANDOM SIGNAL GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
% Modified by : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [vmary_ce,random_bit,enc_output]=marymsg(q,n,m,ecc,r_rm,m_rm)
% if reedmuller is desired
if ecc==2;
k=1; % # of the rows=k;# of the columns=2^m
for i=1:r_rm;
 k=k+prod(1:m_rm)/prod(1:m_rm-i)/prod(1:i);
end
[random_bit]=msg(round(q*n*m*k/(2^m_rm)));
enc_output=rmencoder(r_rm,m_rm,random_bit);

%unless reedmuller is desired
elseif ecc~=2;
[random_bit]=msg(n*m*q*.5-6);
conv_g=[1 0 1 1 0 1 1;1 1 1 1 0 0 1];
conv_k0=1;
enc_output=cnv_encd(conv_g,conv_k0,random_bit);
end
decml=bm(q,enc_output);
deciml=decml(1,1:(n*m));
vmary_ce=(reshape(deciml,m,n))';
%---

109

MB

%MB

% TITLE : M-ARY TO BINARY CONVERTER
%---
% Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function [b]=mb(q,m)
row=size(m,1);
col=size(m,2);
m=reshape(m',1,(row*col));
b0=rem(m,2);
m=(m-b0)./2;
B=b0;
for j=1:q-1
bj=rem(m,2);
m=(m-bj)./2;
B=[B;bj];
end
b=B(:)';
binary=b;
%---

110

METRIC

%METRIC

% TITLE : VITERBI HARD DECISION DECODING METRIC

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function distance=metric(v_x,v_y)
if v_x==v_y
distance=0;
else
distance=1;
end
%---

111

MLTPL

%MLTPL

% TITLE : COMMON MULTIPLES

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function [mult]=mltpl(n,m)
max=n*m;
multvect=[1];
for i=2:max;
 remdr=rem(max,i);
if remdr==0
 multvect=[multvect i];
else
 multvect=multvect;
end
mult=multvect;
end
%---

112

MSG

%MSG

% TITLE : RANDOM BIT SEQUENCE GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function source_msg_bit=msg(k)
seed=33;
source_msg_bit=randint(1,k,[0 1],seed);
%u=zeros(1,k);%u(1,1)=1;
%---

113

NXT_STAT

%NXT_STAT

% TITLE : NEXT STATE IN VITERBI ALGORITHM

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
function [next_state,memory_contents]=nxt_stat(current_state,input,v_L,v_k)
binary_state=deci2bin(current_state,v_k*(v_L-1));
binary_input=deci2bin(input,v_k);
next_state_binary=[binary_input,binary_state(1:(v_L-2)*v_k)];
next_state=bin2deci(next_state_binary);
memory_contents=[binary_input,binary_state];
%---

114

OFST

%OFST

% TITLE : CHANNEL OFFSET

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function xo=ofst(e,N,x)
[m Nt]=size(x);
xo=x.';
x=x.';
x=x(:);
x=x.';
Nt=length(x);
l=1:Nt;
ex=x.*exp(i*(2*pi/N)*e.*l);
xo(:)=x;
xo=xo.';
%---

115

PAPR2

%PAPR2

% TITLE : PEAK-TO-AVERAGE POWER RATIO, PEAK CLIPPING AND
HANNING WINDOWING

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN Serdar Umit, LTJG, TURKISH NAVY
%--
function [ppp]=papr2(xmtifft,N,freqno,pic);
window=1; %0 FOR NO WINDOWING.....1 FOR WINDOWING...2 FOR CLIPPING
if window==1
 xmtifft=xmtifft*50;
xmtifft=xmtifft(:,[17:80]);
sig=abs(xmtifft);
figure(30);plot(sig)
han=hanning(9)'; %HANNING WINDOW
kc=0.1; %hanning coefficient
wc=1-kc*han; %window construction
%size_wc=size(wc)
ka=0.2;
wc2=1+ka*han;
rmspow=sqrt(64);
cr=1.4;
A=cr*rmspow; %clipping level
sig1=sig';
mxm=max(sig1);
for i=1:size(sig,1)
 for j=1:size(sig,2)
 if mxm(1,i)==sig(i,j)
 place(i,1)=j;
 end
 end
end

ss=0;
for i=1:size(sig,1)
 for j=1:size(sig,2)
 if sig(i,j)>A
 if j>=5 & j<=size(sig,2)-4
 xmtifft(i,[j-4:j+4])=xmtifft(i,[j-4:j+4]).*wc;
 elseif j<5
 xmtifft(i,[j:j+4])=xmtifft(i,[j:j+4]).*(1-kc*hanning(5)');
 elseif j>size(sig,2)-4

116

 xmtifft(i,[j-4:j])=xmtifft(i,[j-4:j]).*(1-kc*hanning(5)');
 end
 end
 end
end

BB=1;
if BB==1
B=2; %BOTTOM LEVEL
ss=0;
for i=1:size(sig,1)
 for j=1:size(sig,2)
 if sig(i,j)<B
 if j>=5 & j<=size(sig,2)-4
 xmtifft(i,[j-4:j+4])=xmtifft(i,[j-4:j+4]).*wc2;
 elseif j<5
 xmtifft(i,[j:j+4])=xmtifft(i,[j:j+4]).*(1+ka*hanning(5)');
 elseif j>size(sig,2)-2
 xmtifft(i,[j-4:j])=xmtifft(i,[j-4:j]).*(1+ka*hanning(5)');
 end
 end
 end
end
end

% PEAK CLIPPING
elseif window==2
CL=12; %CLIPPING LEVEL
 xmtifft=xmtifft*50;
xmtifft=xmtifft(:,[17:80]);
sig=abs(xmtifft);
 figure(30);plot(sig);
for i=1:size(sig,1)
 for j=1:size(sig,2)
 if sig(i,j)>CL
 xmtifft(i,j)=CL;
 end
 end
end

end
if window~=0
% insertion guard interval
Ng=16;
xmtifft=[xmtifft(:,N-Ng+1:N) xmtifft];

117

%xmtifft_afterGI=size(xmtifft)
ppp=xmtifft*.02;

elseif window==0
 ppp=xmtifft;
end

% PAPR CALCULATION
pow=xmtifft.*conj(xmtifft);
pow1=pow'; %transpose
maxi=max(pow1); %find peak ins. power of OFDM signal
ave=mean(pow1); %find average ins. power of OFDM signal
pap=maxi./ave; %PAPR array (PAPR value of each OFDM symbol)
max_PAPR=10*log10(max(pap)) % maximum PAPR in dB
ave_PAPR=10*log10(sum(pap)/size(pap,2)) %average PAPR in dB
%---

118

RAY_DOP

%RAY_DOP

% TITLE : RAYLEIGH DOPPLER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function c=ray_dop(s,M,N,es)
m=0:M-1;
randn('seed',s+10);
pr1=randn(1,20);
randn('seed',s+20);
pim=i*randn(1,20);
p=pr1+pim;
p=p/(40^.5);
rand('seed',s+30);
e=rand(1,20);
e=es*cos(2*pi*(e-.5));
E=exp(i*2*pi*e'*m/N);
c=p*E;
%---

119

RMDECODER

%RMDECODER

% TITLE : RM DECODER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [msg_decoded_line]=rmdecoder(Me,r,m);
k=1;% # of the rows=k;# of the columns=2^m
for i=1:r;
 k=k+prod(1:m)/prod(1:m-i)/prod(1:i);
end
[GM,k]=rmgenmat(r,m);
[WW1]=WW_mat2(GM,r,m,k);
rrr=rem(size(Me,2),2^m);
if rrr~=0;
 %display('ERROR!!! The # of the bits at the encoder output is not equal to the # of the
bits at the decoder input');
 Me=[Me zeros(1,2^m-rrr)];
end
Me=reshape(Me,2^m,length(Me)/2^m)';%RESHAPE Me AS 2^m COLUMNS
cv_row=1;
for i=2:k;
 counter=0;
 for j=1:size(WW1,1);
 dpt=dot_pro(GM(i,:),WW1(j,:));
 if dpt==1;
 dpt2_counter=0;flag=0;
 for z=2:k;
 dpt2=dot_pro(GM(z,:),WW1(j,:));
 if dpt2==0;
 dpt2_counter=dpt2_counter+1;
 end
 end
 if dpt2_counter==k-2;
 CV(cv_row,:)=WW1(j,:);
 check(1,cv_row)=i;
 check(2,cv_row)=j;
 cv_row=cv_row+1;
 counter=counter+1;
 GG(1,i)=counter;
 end
 end

120

 end
end

dp0=0;dp1=0;row_dd=1;My=zeros(size(Me,1),length(GM));
ss=0;
for f=1:size(Me,1);
 for i=2:k;
 for j=1:GG(1,i);%(2^(m-r));
 dp=dot_pro(CV(row_dd,:),Me(f,:));
 DP(i,j)=dp;
 if dp==1
 dp1=dp1+1;
 elseif dp==0;
 dp0=dp0+1;
 end
 row_dd=row_dd+1;
 end
 if dp1>dp0
 dotpro=1;
 else %if dp0>dp1
 dotpro=0;
 end
 dp0=0;dp1=0;
 WWW(1,i-1)=dotpro;
 My(f,:)=xor(My(f,:),(dotpro*GM(i,:)));
 end
 MM(f,:)=xor(My(f,:),Me(f,:));
 tt1=0;tt0=0;
 for i=1:size(MM,2);
 if MM(f,i)==0;
 tt0=tt0+1;
 elseif MM(f,i)==1;
 tt1=tt1+1;
 end
 end
 if tt1>tt0
 tt=1;
 elseif tt0>tt1;
 tt=0;
 elseif tt0==tt1
 tt=1;
 end
 msg_decoded(f,1)=tt;
 for i=2:k;
 msg_decoded(f,i)=WWW(1,i-1);
 end

121

 row_dd=1;
end
Mc=xor(MM,Me);
msg_decoded_line=reshape(msg_decoded',1,size(msg_decoded,1)*size(msg_decoded,2))
;
%---

122

RMENCODER

%RMENCODER

% TITLE : RM ENCODER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [encd_msg]=rmencoder(r,m,msg1);
[GM,k]=rmgenmat(r,m);
len_msg=size(msg1,2);
rrr=rem(len_msg,k); %check whether padding is necessary
if rrr>0;
 msg=[msg1 zeros(1,k-rrr)];
elseif rrr==0;
 msg=msg1;
end
len=size(msg,2)/k;
msg= reshape(msg,k,len)';%make the message in a matrix form
Mc=msg*GM;
for i=1:len;
 for j=1:2^m;
 if rem(Mc(i,j),2)==0;
 Mc(i,j)=0;
 elseif rem(Mc(i,j),2)>0;
 Mc(i,j)=1;
 end
 end
end
Mc; %ENCODED MESSAGE MATRIX
encd_msg=reshape(Mc',1,(size(Mc,1)*size(Mc,2)));%ENCODED MESSAGE
%---

123

RMGENMAT

%RMGENMAT

% TITLE : RM ENCODING MATRIX GENERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [GM,k]=rmgenmat(r,m);
k=1;% # of the rows=k;# of the columns=2^m
for i=1:r;
 k=k+prod(1:m)/prod(1:m-i)/prod(1:i);
end
[R]=gm_part1(m); %creating the monomials of the generator matrix (1,x1,x2,....,xm)
row=m+2; %creating the second part of the generator matrix (x1x2,x1x3,.....,xm-
1xm)
for i=2:m;
 for j=i+1:m+1;
 R(row,:)=and(R(i,:),R(j,:));
 row=row+1;
 end
end
if k>row-1; % check whether the third part is necessary
 % if necessary,
 for i=2:m+1; %creating the third part of the generator matrix (x1x2x3,x1x2x4,.....,xm-
2xm-1xm)
 for j=i+1:m;
 for z=j+1:m+1;
 R(row,:)=R(i,:)&R(j,:)&R(z,:);
 row=row+1;
 end
 end
 end
end
if k>row-1;% check whether the fourth part is necessary
 % if necessary,
 %creating the fourth part of the generator matrix (x1x2x3x4,x1x2x3x5,.....,xm-3xm-
2xm-1xm)
 for i=2:m-2;
 for j=i+1:m-1;
 for z=j+1:m;
 for y=z+1:m+1;
 R(row,:)=R(i,:)&R(j,:)&R(z,:)&R(y,:);
 row=row+1;

124

 end
 end
 end
 end
end
if k>row-1;% check whether the fifth part is necessary
 % if necessary, add the fifth part
 for i=2:m-2;
 for j=i+1:m-1;
 for z=j+1:m;
 for y=z+1:m+1;
 R(row,:)=R(i,:)&R(j,:)&R(z,:)&R(y,:);
 row=row+1;
 end
 end
 end
 end
end
if k>row-1;% check whether the sixth part is necessary
 % if necessary, add the sixth part
 for i=2:m-3;
 for j=i+1:m-2;
 for z=j+1:m-1;
 for y=z+1:m;
 for h=m+1;
 R(row,:)=R(i,:)&R(j,:)&R(z,:)&R(y,:)&R(h,:);
 row=row+1;
 end
 end
 end
 end
 end
end
if k>row-1
 display('ERROR!!! the generator matrix need to be modified seventh part is necessary')
end
for i=1:k;
 GM(i,:)=R(i,:);
end
GM;% RM ENCODING MATRIX
%---

125

ROTM

%ROTM

% TITLE : ROTATE VECTOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function [vp,vn]=rotm(v,m)
L=length(v);
m=rem(m,L);
ii=(1:L)-1;
isp=rem(ii-m+L,L)+1;
isn=rem(ii+m+L,L)+1;
vp=v(isp);
vn=v(isn);
%---

126

TDA

%TDA

% TITLE : FFT AND GI INSERTION OPERATOR

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Prof. Paul H. Moose, Naval Postgraduate School
% Modified by : Tan Kok Chye, Naval Postgraduate School
%--
function x=tda(Ng,X)
[m N]=size(X);
% Perform inverse FFT on frequency values in array,X
x=ifft(X.');
% Add precursor of Ng samples to the beginning of the time domain array for channel
% compensation.
x=x.';
if Ng==0
x=x;
else
x=[x(:,N-Ng+1:N) x];
end
%---

127

VITERBI

%VITERBI

% TITLE : VITERBI DECODER

%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%--
func-
tion[decoder_output,survivor_state,cumulated_metric]=viterbi(v_G,v_k,channel_output)
v_n=size(v_G,1);
% check the sizes
if rem(size(v_G,2),v_k)~=0
error('Size of v_G and v_k do not agree')
end
if rem(size(channel_output,2),v_n)~=0
error('channel output not of the right size')
end
v_L=size(v_G,2)/v_k;
number_of_states=2^((v_L-1)*v_k);
%generate state transition matrix, output matrix, and input matrix
for v_j=0:number_of_states-1
for v_l=0:2^v_k-1
[next_state,memory_contents]=nxt_stat(v_j,v_l,v_L,v_k);
input(v_j+1,next_state+1)=v_l;
branch_output=rem(memory_contents*v_G',2);
nextstate(v_j+1,v_l+1)=next_state;
output(v_j+1,v_l+1)=bin2deci(branch_output);
end
end
state_metric=zeros(number_of_states,2);
depth_of_trellis=length(channel_output)/v_n;
channel_output_matrix=reshape(channel_output,v_n,depth_of_trellis);
survivor_state=zeros(number_of_states,depth_of_trellis+1);
%start decoding of non-tail channel outputs
for v_i=1:depth_of_trellis-v_L+1
flag=zeros(1,number_of_states);
if v_i<=v_L
step=2^((v_L-v_i)*v_k);
else
step=1;
end
for v_j=0:step:number_of_states-1
for v_l=0:2^v_k-1

128

branch_metric=0;
binary_output=deci2bin(output(v_j+1,v_l+1),v_n);
for v_ll=1:v_n
branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_
ll));
end
if((state_metric(nextstate(v_j+1,v_l+1)+1,2)>state_metric(v_j+1,1)+branch_metric)|flag(
nextstate(v_j+1,v_l+1)+1)==0)
state_metric(nextstate(v_j+1,v_l+1)+1,2)=state_metric(v_j+1,1)+branch_metric;
survivor_state(nextstate(v_j+1,v_l+1)+1,v_i+1)=v_j;
flag(nextstate(v_j+1,v_l+1)+1)=1;
end
end
end
state_metric=state_metric(:,2:-1:1);
end
%start decoding of the tail channel_outputs
for v_i=depth_of_trellis-v_L+2:depth_of_trellis
flag=zeros(1,number_of_states);
last_stop=number_of_states/(2^((v_i-depth_of_trellis+v_L-2)*v_k));
for v_j=0:last_stop-1
branch_metric=0;
binary_output=deci2bin(output(v_j+1,1),v_n);
for v_ll=1:v_n
branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_
ll));
end
if((state_metric(nextstate(v_j+1,1)+1,2)>state_metric(v_j+1,1)+branch_metric)|flag(next
state(v_j+1,1)+1)==0)
state_metric(nextstate(v_j+1,1)+1,2)=state_metric(v_j+1,1)+branch_metric;
survivor_state(nextstate(v_j+1,1)+1,v_i+1)=v_j;
flag(nextstate(v_j+1,1)+1)=1;
end
end
state_metric=state_metric(:,2:-1:1);
end
%generate the decoder output from the optimal path
state_sequence=zeros(1,depth_of_trellis+1);
state_sequence(1,depth_of_trellis)=survivor_state(1,depth_of_trellis+1);
for v_i=1:depth_of_trellis
state_sequence(1,depth_of_trellis-
v_i+1)=survivor_state((state_sequence(1,depth_of_trellis+2-v_i)+1),depth_of_trellis-
v_i+2);
end
decoder_output_matrix=zeros(v_k,depth_of_trellis-v_L+1);
for v_i=1:depth_of_trellis-v_L+1

129

dec_output_deci=input(state_sequence(1,v_i)+1,state_sequence(1,v_i+1)+1);
dec_output_bin=deci2bin(dec_output_deci,v_k);
decoder_output_matrix(:,v_i)=dec_output_bin(v_k:-1:1)';
end
decoder_output=reshape(decoder_output_matrix,1,v_k*(depth_of_trellis-v_L+1));
cumulated_metric=state_metric(1,1);
%---

130

WWMAT_2

%WWMAT_2

% TITLE : CHARACTERISTIC VECTOR FINDER
%---
% Thesis Advisor : Prof M. Tummala, Naval Postgraduate School
% Author : TEZEREN,Serdar Umit, LTJG, TURKISH NAVY
%--
function [WW1]=WW_mat2(GM,r,m,k);
[GM,k]=rmgenmat(r,m);
row_d=1;%rows themselves and inverses
for i=2:m+1;
 WW1(row_d,:)=GM(i,:);
 WW1(row_d,:)=inverse(GM(i,:));
 row_d=row_d+2;
end
%double combinations
for i=2:k;
 for j=i+1:k;
 WW1(row_d,:)=GM(i,:) & GM(j,:);
 WW1(row_d+1,:)=inverse(GM(i,:)) & GM(j,:);
 WW1(row_d+2,:)=GM(i,:) & inverse(GM(j,:));
 WW1(row_d+3,:)=inverse(GM(i,:)) & inverse(GM(j,:));
 row_d=row_d+4;
 end
end
for cc=3:m-1;
 for j=1:size(WW1,1);
 for i=cc+1:m+1;
 WW1(row_d,:)=GM(i,:) & WW1(j,:);
 WW1(row_d+1,:)=inverse(GM(i,:)) & WW1(j,:);
 row_d=row_d+2;
 end
 end
end
WW1(row_d,:)=ones(1,size(WW1,2));%adding all ones matrix at the end of the matrix

%---

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

LIST OF REFERENCES

1. Ben Cooke, “Reed-Muller Error Correction Codes,” The MIT Undergraduate
Journal of Mathematics, Vol. 1, pp. 21-26, 1999.

2. HUT Communications Laboratory, Lecture Notes on OFDM, Course Notes for S-
72.311 (Postgraduate Course in Communications Engineering), Hut, Finland
(Unpublished).

3. David V. Roderick, “A Coded Orthogonal Frequency Division Multiplexing
Simulation of a High Data Rate, Line-of-Sight, Digital Radio for Mobile Mari-
time Communications,” Master’s Thesis, Naval Postgraduate School, Monterey,
California, 1997.

4. K. C. Tan, “Development, Simulation and Evaluation of the IEEE 802.11a Physi-
cal Layer in a Multipath Environment”, Master’s Thesis, Naval Postgraduate
School, Monterey, California, 2001.

5. A. L. Intini, “Orthogonal Frequency Division Multiplexing for Wireless Net-
works,” Unpublished Project Report, University of California, Santa Barbara,
California, 2000.

6. A. Y. Erdogan, “Analysis of the Effects of Frequency Offset in OFDM Systems,”
Master’s Thesis, Naval Postgraduate School, Monterey, California, 2004.

7. Institute of Electrical and Electronics Engineers, 802.11a, Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications High-Speed
Physical Layer in the 5 GHz Band, Piscataway, New Jersey, 1999.

8. Theodore S. Rappaport, Wireless Communications, Prentice Hall, Upper Saddle
River, New Jersey, 2002.

9. V. Tarokh and H. Jafarkhani, “On the Computation and Reduction of the Peak-to-
Average Power Ratio in Multicarrier Communications,” IEEE Transactions on
Communications, Vol. 48, No. 1, pp. 37-44, 2000.

10. J. H. Scott, “The How and Why of OFDM,” EBU Technical Review, pp. 43-50,
Geneva, 22-28 January 1998.

11. Stephen B. Wicker, Error Correction Systems for Digital Communication and
Storage, Prentice Hall, Upper Saddle River, New Jersey, 1995.

12. Clark Robertson, Notes for EC4580 (Error Correction Coding), Naval Postgradu-
ate School, 2003 (Unpublished).

13. A. Burr, “Turbo Codes: The Ultimate Error Correction Codes?,” Electronics &
Communication Engineering Journal, pp. 155-165, August 2001.

14. T. A. Wilkinson and A. E. Jones, “Minimization of Peak to Average Envelope
Power Ratio of Multicarrier Transmission Schemes by Block Coding,” IEEE Ve-
hicular Technology Conference, pp. 825-829, 1995.

133

15. J. A. Davis and J. Jedwab, “Peak-to-Mean Power Control in OFDM, Golay Com-
plementary Sequences, and Reed-Muller Codes,” IEEE Transactions on Informa-
tion Theory, Vol. 45, No. 7, pp. 2397-2417, 1999.

134

135

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Proffessor Murali Tummala, Code EC/TU
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Proffessor Roberto Cristi, Code EC/CX
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Dr. Richard North
Deputy Technical Director
PEO C4I and Space
San Diego, California

7. Benjamin Cooke
Duke University Mathematics Department
Durham, North Carolina

8. Serdar Umit TEZEREN
Deniz Kuvvetleri Komutanligi
Bakanliklar, Ankara, TURKEY

	I.INTRODUCTION
	A.OBJECTIVE
	B.RELATED WORK
	C.THESIS ORGANIZATION

	II.CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (COFDM) AND PEAK-TO-AVERAGE POWER RATIO (PAPR)
	A.CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (COFDM)
	B.COFDM SCHEMATIC DIAGRAM
	1.Channel Coding
	2.Block Interleaver
	3.Symbol Mapping
	4.Discrete Fourier Transform (DFT)
	5.Guard Interval and Cyclic Extension
	6.Modulator
	7.Channel
	8.Receiver

	C.PEAK TO AVERAGE POWER RATIO (PAPR)

	III.CODING SCHEME
	A.ERROR CORRECTION SYSTEMS
	B.REED-MULLER CODES
	1.Definitions of Operations
	2.Encoding Algorithm
	3.Decoding Algorithm
	4.Reduction of PAPR of COFDM Using RM Coding

	C.PEAK CLIPPING
	D.HANNING WINDOWING

	IV.SIMULATION RESULTS
	A.SIMULATION MODEL
	B.SIMULATION PARAMETERS
	C.SIMULATION RESULTS
	1.Multipath Effects
	2.Outdoor Environment
	3.PAPR Reduction

	V.CONCLUSION
	A.CONCLUSIONS
	B.FUTURE WORK

	APPENDIX A.SIMULATION-ARCHITECTURE
	A.GENERAL STRUCTURE OF MATLAB PROGRAMMING
	1.COFDM Transmitter
	a.Message Generator
	b.FEC Coding
	c.Interleaver
	d.Symbol Reformatter
	e.Differential Encoder
	f.IFFT Processing
	g.Guard Interval Insertion

	2.COFDM Receiver
	a.Guard Interval Removal
	b.FFT Processing
	c.Differential Decoding and Symbol Reformatting
	d.Deinterleaver
	e.FEC Decoder
	f.Decoded Message

	3.Channel Models

	B.MATLAB PROGRAMMING DETAILS
	1.COFDM Transmitter
	2.COFDM Receiver
	3.COFDM Channel

	APPENDIX B. COFDM MATLAB CODE
	INITIAL DISTRIBUTION LIST

